3D全自动外泌体荧光检测分析系统

3D全自动外泌体荧光检测分析系统


法国Abbelight公司开发的3D全自动外泌体荧光检测分析系统是一款无需纯化的、全自动的可对单个外泌体进行表征分析的全新设备。该设备能够提供全方位的外泌体表征信息,包括外泌体粒径大小、亚型分布、携带蛋白表达、单个外泌体的膜蛋白与生物标志物共定位等。操作简单,结果可靠。

3D全自动外泌体荧光检测分析系统基于特异性免疫捕获技术,允许研究者直接分析特定群体的外泌体。通过单分子定位技术成像,可以得到单个外泌体的超分辨成像结果,尺度可以到20nm全自动外泌体荧光检测分析系统兼容各种生物样本,除了纯化的外泌体之外,对于血液、尿液、恶性肿瘤、腹水中的外泌体也可直接检测分析,大大拓展了研究范围。


通过单分子定位技术成像,可以得到单个外泌体的超分辨成像结果,尺度可以到20nm,对于血液、尿液、恶性肿瘤、腹水中的外泌体也可直接检测分析。

应用方向及主要特征


无须纯化

特异性捕获

超分辨成像与粒径统计

表面蛋白与内容物分析
多通道成像
单外泌体共定位分析


超高分辨单外泌体成像

左:2D单个外泌体成像;右:3D单个外泌体成像


外泌体粒径分析:通过团簇分析外泌体的整体和亚群的粒径分布


膜蛋白表征与共定位分析,以CD63,CD81&CD9为例表征其单阳,双阳和三阳的比例


外泌体内容物表征

对比穿膜处理后外泌体中内容物aGFP的表达 


观测细胞中外泌体的分布情况,研究细胞中细胞器或者其他蛋白和外泌体的定位关系


应用案例

法国Abbelight公司开发的3D全自动外泌体荧光检测分析系统是一款无需纯化的、全自动的可对单个外泌体进行表征分析的全新设备。该设备能够提供全方位的单个外泌体表征信息,包括外泌体粒径大小、亚型分布、携带蛋白表达、单个外泌体的膜蛋白与生物标志物共定位等。

肿瘤诊断

载药系统开发

眼科疾病诊断

疫苗研发

脊髓受伤机制研究

血浆/血清外泌体分析

外泌体工程化

呼吸疾病诊断

嵌合抗原受体T细胞(CAR T)免疫疗法是治疗恶性肿瘤的新兴手段,抗CD19嵌合抗原受体T细胞(CD19.CAR T)在B细胞恶性肿瘤治疗疗效显著,但常伴有免疫效应细胞相关神经毒性综合征(ICANS)这一不良反应,其临床特征包括脑病、认知障碍、语言障碍、癫痫发作以及较少见的脑水肿。虽然ICANS致死率低(1%–2%),但其治疗需要使用大剂量类固醇和免疫抑制疗法,会影响CAR T细胞活性和治疗效果,并增加非复发性死亡率。

近期,博洛尼亚大学发表题为 “CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas   treated with CD19-directed CAR T cells”为题的文章,借助3D全自动外泌体荧光检测分析系统揭示了CAR+细胞外囊泡(CAR+EVs)在预测和理解这种神经毒性反应中的重要作用,为研究者预防和管理CAR T细胞治疗的神经毒性反应提供了新的思路,对推动 CAR T 细胞免疫疗法安全应用与持续发展意义重大。


更多信息请点击:https://qd-china.com/zh/news/detail/2412231692067

外泌体2D成像


外泌体3D成像


 

外泌体形态分析

 


[1] Storci, Gianluca, et al. "CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas treated with CD19-directed CAR T cells." The Journal of Clinical Investigation 134.14 (2024).

[2] Huang, Xiaowan, et al. "Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors." Nature Nanotechnology (2024): 1-9.

[3] Ye, Qian-Ni, et al. "Orchestrating NK and T cells via tri-specific nano-antibodies for synergistic antitumor immunity." Nature Communications 15.1 (2024): 6211.

[4] Shafaq-Zadah, Massiullah, et al. "Exploration into Galectin-3 Driven Endocytosis and Lattices." Biomolecules 14.9 (2024): 1169.

[5] Sanchez-Londono, Mariana, et al. "Visualization of Type IV-A1 CRISPR-mediated repression of gene expression and plasmid replication." Nucleic Acids Research 52.20 (2024): 12592-12603.

[6] Rajbanshi B, Guruacharya A, Mandell J W, et al. Localization, induction, and cellular effects of tau phosphorylated at threonine 217 1[J]. Alzheimer's & Dementia, 2023, 19(7): 2874-2887.

[7] Friedl, Karoline, et al. "Robust and fast multicolor Single Molecule Localization Microscopy using spectral separation and demixing." BioRxiv (2023): 2023-01.

[8] Baschieri, Francesco, et al. "Fibroblasts generate topographical cues that steer cancer cell migration." Science Advances 9.33 (2023): eade2120.

[9] Wessel, Aimee K., et al. "Escherichia coli SPFH membrane microdomain proteins HflKC contribute to aminoglycoside and oxidative stress tolerance." Microbiology Spectrum 11.4 (2023): e01767-23.

[10] Liu, Wei, et al. "Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation." Journal of leukocyte biology 111.4 (2022): 771-791.

[11] Rajbanshi, Binita, et al. "Localization, induction, and cellular effects of tau phosphorylated at threonine 217." Alzheimer's & Dementia (2023).

[12] Pagliuca, M., et al. "38P Single molecule localization microscopy for extracellular vesicles detection in cancer." Annals of Oncology 33 (2022): S1395-S1396.

[13] Robaszkiewicz, A., and K. Gronkowska. "36P EP300 as an epigenetic target in p53 wild-type tumors treated with cisplatin." Annals of Oncology 33 (2022): S1395.

[14] He, Jin, et al. "Heterozygous Seryl‐tRNA Synthetase 1 Variants Cause Charcot–Marie–Tooth Disease." Annals of Neurology (2022).

[15] Gazzola, Morgan, et al. "Microtubules self-repair in living cells." Current Biology (2022).

[16] Liu, Wei, et al. "Mitofusin‐2 regulates leukocyte adhesion and β2 integrin activation." Journal of Leukocyte Biology 111.4 (2022): 771-791.

[17] Portes, Marion, et al. "Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts." Elife 11 (2022): e75610.

[18] Wessel, Aimee K., et al. "Escherichia coli membrane microdomain SPFH protein HflC interacts with YajC and contributes to aminoglycoside and oxidative stress tolerance." bioRxiv (2022).

[19] Radhakrishnan, A. V., et al. "Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration." The Integrin Interactome. Humana, New York, NY, (2021). 85-113.

[20] Jouchet, Pierre, et al. "Nanometric axial localization of single fluorescent molecules with modulated excitation." Nature Photonics (2021): 1-8.

[21] Orré, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." Nature Communications 12.1 (2021): 3104.

[22] Pernier, Julien, et al. "Myosin 1b flattens and prunes branched actin filaments." Journal of cell science 133.18 (2020).

[23] Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: optimized single molecule localization microscopy." Methods 174 (2020): 100-114.

[24] Mau, Adrien, et al. "Fast scanned widefield scheme provides tunable and uniform illumination for optimized SMLM on large fields of view." bioRxiv (2020).

[25] Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature Communications 10.1 (2019): 1980.

[26] Woodhams, Stephen G., et al. "Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain." Pain 160.11 (2019): 2641-2650.

[27] Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).

[28] Denis, Kevin, et al. "Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease." Nature microbiology 4.6 (2019): 972.

[29] Szabo, Quentin, et al. "TADs are 3D structural units of higher-order chromosome organization in Drosophila." Science advances 4.2 (2018): eaar8082. 

[30] Boudjemaa, Rym, et al. "Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus." Antimicrobial agents and chemotherapy 62.7 (2018): e00023-18.














1分钟快速了解3D全自动外泌体荧光检测分析系统