3D单分子荧光成像系统
3D单分子荧光成像系统

3D单分子荧光成像系统

abbelight是一款模块化的多功能的基于单分子定位的显微成像(SMLM)系统,它独有的DAISY技术能够极大的提高定位精度的同时,还保持在较小的尺寸。该设备具有高度灵活性,能够搭载在绝大多数的倒置显微镜上,并且仅仅需要使用一个C-mount(CCD或CMOS所连接的部位)接口,即可将您的倒置显微镜直接升级为超分辨显微镜。并且改造过程不会破坏原有显微镜系统的光路和功能,不会与其它的显微镜改造相冲突。

本设备既在配置上的选择也十分灵活。它既可以作为显微镜的一个升级配件来改造您的显微镜,也拥有完整的超分辨系统。让用户在获得专业的图像质量的同时,享受到最为经济合理的超分辨升级方案。  


加装
TIRF
PALM
STORM
SPT

smFRET

...... 


兼容
Confocal
Spinning-Desk
Widefield
SIM

STED

......

提供STORM、PLAM、PAINT、SPT、smFRET成像模式

SAFe 180 超分辨模块



+  成像模式:PALM、STORM、smFRET、PAINT、SPT

+  光源模式:Epi、TIRF、HILO

+  超高分辨率:25 nm的XY轴分辨率,50nm的Z轴分辨率

+  超大视野:200 × 200 μm2的视野

+  全自动化控制

+  无需高功率激光光源

+  可升级SAFe 360



大视野3D超分辨模块




SAFe 360 超分辨模块



+  具有SAFe 180的所有功能

+  最高分辨率:15 nm的XYZ轴分辨率

+  一次可同时采集1.2 μm深度图像信息

+  最高图像深度:10 μm

+  实时漂移矫正

+  最高四色同时成像

+  活细胞成像模式



高精准3D超分辨显微成像模块


配套试剂


Smart kit
Compatible dyes

•  10 doses per box

•  200 µL per dose

•  30 sec prepartion

•  2 months in a fridge

•  2 weeks on sample


•  Atto 488, WGA-AF®488

•  AF®532, CF®532, Cy3b

•  AF®555, AF®594, CF®555, AF®568, CF®568, Cy5, MemBriteTM 568, TMR

•  AF®647, CF®647, AF®680, CF®680, MemBriteTM 640, Actin-stain 670, SiR647




肌动蛋白细胞足网格蛋白线粒体


[1] Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.

[2] Woodhams, Stephen G., et al. "Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain." Pain 160.11 (2019): 2641-2650.

[3] Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).

[4] Denis, Kevin, et al. "Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease." Nature microbiology 4.6 (2019): 972.

[5] Szabo, Quentin, et al. "TADs are 3D structural units of higher-order chromosome organization in Drosophila." Science advances 4.2 (2018): eaar8082. 

[6] Boudjemaa, Rym, et al. "Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus." Antimicrobial agents and chemotherapy 62.7 (2018): e00023-18.

[7] Culley, Siân, et al. "Quantitative mapping and minimization of super-resolution optical imaging artifacts." Nature methods 15.4 (2018): 263.

[8] Berger, Stephen L., et al. "Localized myosin II activity regulates assembly and plasticity of the axon initial segment." Neuron 97.3 (2018): 555-570.

[9] Cabriel, Clément, et al. "Aberration-accounting calibration for 3D single-molecule localization microscopy." Optics letters 43.2 (2018): 174-177. 

[10] Bouissou, Anaïs, et al. "Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring." ACS nano 11.4 (2017): 4028-4040. 

[11] Sellés, Julien, et al. "Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy." Scientific reports 7.1 (2017): 14732.

[12] Bourg, Nicolas, et al. "Direct optical nanoscopy with axially localized detection." Nature Photonics 9.9 (2015): 587. 

Quantum Design International

访问Quantum Design总部