太赫兹近场光学显微镜-THz-NeaSNOM

太赫兹近场光学显微镜-THz-NeaSNOM

--30nm光学信号空间分辨


太赫兹(THz)光源波长较大,一般在300微米左右。由于衍射极限的存在,THz远场测量系统的光学空间分辨率一般被限制在150微米左右。该THz光远场测量结果的准确度经常无法满足对材料科学研究,尤其是需要纳米分辨率的微细尺度材料分布研究(例如半导体芯片中各个组成:源极,漏极,栅极)的实验。THz-NeaSNOM近场光学显微镜的出现为此难题提供了一个很好的解决方案。


德国neaspec公司与Fraunhofer IPM在neaspec公司neaSNOM近场光学显微镜的基础上,已经成功研发了一套易用使用且THz系统的空间分辨率达到30nm的实验设备。


优于50nm空间分辨,信噪比,电子传播、声子振动行为表征

产品特点/基本参数


+  优于30nm的空间分辨率
+  常用THz光范围:0.1-3THz
+  设计的宽波段抛面镜
+  THz研究可使用商业化的AFM探针
+  THz-TDS使用飞秒激光光源
+  简单易用,稳定性高


半导体结构表征—30nm空间分辨率


THz-NeaSNOM近场光学显微镜(下图左)对半导体结构的测量结果图。

该结果表明硅衬底(上图左,灰色)上的SiO(一氧化硅)的尺寸大约在1.5×1 平方微米。通过分析左侧的高度数据,可以知道该一氧化硅结构仅仅只有大约22纳米厚度。虽然该层状结构非常薄,但THz-NeaSNOM近场光学显微镜(下图左)在测量高度的同时仍然能够记录该结构与衬底的近场光学信号的明显不同衬度的结果。该THz-NeaSNOM近场光学显微镜不仅在测量非常薄样品的时 候灵敏度非常高,而且通过分析近场光学信号数据(下图右)也证实了它超高的空间分辨率(~25-30nm)。


     表征半导体器件 Nature 456,454(2008)   



 超快机制研究纳米线  Nature Photonics 8,841(2014)  



更多应用案例,请您致电 010-85120277/78/79/80 或 写信 info@qd-china.com 获取。


半导体器件表征 Nature 456,454(2008)




超快机制研究纳米线  Nature Photonics 8,841(2014)




部分用户好评与列表(排名不分先后)


neaspec公司产品以其稳定的性能、的空间分辨率和良好的用户体验,得到了国内外众多科学家的认可和肯定......


"The neaSNOM microscope with it’s imaging and nano-FTIR mode is the most useful research instrument in years, bringing genuinely new insights."

Prof. Dmitri Basov

美国 加州大学

University of California San Diego

Department of Physics

La Jolla, USA

"We were looking for a flexible research tool capable of characterizing our energy storage materials at the nanoscale. neaSNOM proofed to be the system with the highest spatial resolution in infrared imaging and spectroscopy and brings us substantial new insights for our research”

Dr. Jaroslaw Syzdek

美国 劳伦斯伯克利国家实验室

Lawrence Berkeley National Laboratory

Environmental Energy Technologies Division

Berkeley, USA

"The neaSNOM microscope boosted my research in plasmonic properties of noble metal nanocrystals, optical resonances of dielectric nanostructures, and plasmon polaritons of graphene-like two dimensional nanomaterials."

陈焕君 教授

中国 中山大学

Sun Yat-sen University

China

"As a near-field expert I was quickly convinced that neaSNOM is the only optical AFM microscope completely satisfying the needs of demanding near-field experiments. It’s the best comercially available technology and in addition really easy to use."

Prof. Thomas Taubner

德国 亚琛工业大学

RWTH Aachen

Metamaterials & Nano-Optics

Aachen, Germany

"As a newcomer to the near-field optics I am very grateful for the prompt and competent support provided by neaspec’s experts."

Dr. Edward Yoxall

英国 帝国理工大学

Imperial College London

Department of Physics

London, United Kingdom

"After many years of research and development in near-field microscopy, we finally made our dream come true to perform infrared imaging & spectroscopy at the nanoscale. With neaSNOM we can additionally realize Raman, fluorescence and non-linear nano-spectroscopy."

Prof. Rainer Hillenbrand

西班牙 纳米科学协同研究中心

CIC nanoGUNE Research Center

Co-Founder and Scientific Advisor

San Sebastian, Spain

"A unique advantage of the neaSNOM microscope is that it can be applied to many fields of scientific research such as Chemistry, Semiconductor Technology, Polymer Science and even Life-Science."

Dr. Fritz Keilmann

德国 慕尼黑大学

Ludwig-Maximilians Universität München
Co-Founder and Scientific-Advisor
Munich, Germany


南京大学

中山大学

首都师范大学

苏州大学

University of San Diego,USA

University of Southampton, UK

CIC nanoGUNE San Sebastion, Spain

LBNL Berkeley, USA

Fraunhofer Institut ILT Aachen, Germany

Max-Planck-Institut of Quantum Optics, Garching, Germany

University of Bristol, UK

RWTH Aachen, Germany

California State University Long Beach, USA……