全共线多功能超快光谱仪
全共线多功能超快光谱仪

全共线多功能超快光谱仪


全共线多功能超快光谱仪-BIGFOOT是美国密歇根大学衍生公司MONSTR Sense Technologies经过多年潜心研制的一款全新超快光谱仪,采用突破性技术,真正实现了一套设备、一束激光、多种功能。全共线多功能超快光谱仪不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱、相干拉曼光谱、多维相干光谱探测开创性的全共线光路设计(专利认证:No. US 11467031 B2),使其可以与该公司开发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。


超快激光光谱将射频技术和光学技术结合,通过调控延迟时间,实现材料的动力学研究

应用领域


全共线多功能超快光谱仪一套设备、一束激光,可实现三种超快光谱探测:瞬态吸收光谱TAS、相干拉曼光谱ISRS、多维相干光谱MDCS。


1. 瞬态吸收光谱TAS

全共线多功能超快光谱仪-BIGFOOT采用全新完全共线光路,可实现超快激光共振泵浦激励,避免了非共振泵浦技术中高能量激励对研究过程的干扰,是研究物质激发态能级结构及能量弛豫过程的有力工具,可应用于钙钛矿太阳能电池、光催化、低维材料等方面。


2. 相干拉曼光谱ISRS

相干拉曼光谱,也被称为冲击受激拉曼光谱ISRS,其信号高于传统(自发)拉曼散射9个数量级,广泛应用于细胞生物学、组织生物学、神经生物学、微生物学、药理学、材料科学等领域。

高精度激光扫描显微镜联合使用,可以搭建受激拉曼散射显微镜,实现无需荧光标记的快速实时成像,而且受激拉曼不存在非共振背景信号的干扰,在定量分析等方面很具优势,可应用于病理检测、生物代谢等方面。

另一方面,利用超快激光脉冲,可实现时域冲击受激拉曼散射信号的搜集,从而在时域范畴研究材料的结构相变或者活细胞中的超快过程。


3. 多维相干光谱MDCS

多维相干光谱MDCS基于非线性四波混频(FWM)技术,通过对一系列脉冲序列的延时进行扫描和傅里叶变换获得系统吸收、发射二维光谱,从而分析材料内部的各类相互作用。可应用于半导体、过渡金属二硫族二维材料、异质结构、钻石色心、量子点、空腔等离激元、材料缺陷分析等领域。

多维相干光谱MDCS示意图

多维相干光谱MDCS的强大功能总结如下:

1. 多相分离、多相相互作用

可实现相分离样品或异质结构的多组分信号分离,分析多组分之间相干耦合以及电荷转移等非相干耦合。尤其适用于具有复杂domain的半导体纳米结构、异质结构研究。

多维相干光谱MDCS实现多相分离信息

2. 分辨非均匀、均匀展宽

对于单相信号,MDCS沿等频率对角线和垂直对角线方向分析数据,可区别出非均匀、均匀线宽展宽,从而获得激子相干耦合时间,多体相互作用等信息。

3. 微区信号采集

相比传统非共线装置,全共线非线性四波混频技术所需激光功率显著降低,光斑大小可以由普通超快光谱30 μm缩小到2 μm,可更好地实现微区光谱信号采集。

4. 非辐射隐藏电子态信息获得

MDCS外差检测光谱,除了可以探测辐射荧光的电子态之外,可以探测不辐射荧光的隐藏电子态,从而获得样品内部更全面的信息。

5. 泵浦动力学研究

泵浦探测延迟时间调控,可获得相干、非相干耦合的动力学研究

 

多维相干光谱MDCS的泵浦动力学研究 

6. 偏振依赖实验

可实现不同偏振实验,适用于分辨偏振依赖的电子跃迁光谱,根据不同类别信号对偏振的不同依赖响应,分析不同类别成因。

7. 更高维度数据分析

另外,基于MDCS三阶非线性光谱信息,可进行更高维度复杂数据处理,进而获得材料的应变张量等信息。


产品特点


自动软件控制

启用不同光谱功能时,系统自动切换设定测量参数,信号处理基于FPGA硬件,并经过精心设计,自动匹配中心波长、光谱带宽、光谱分辨率、弛豫时间范围与时域分辨率等参数。

光路准直设计

稳健的双通光路设计,硬件定制加工,无需额外的对准操作即可使用。

无需校准

参考光全光路伴随:稳定的Nd:YAG激光作为参考光,全过程伴随测量光路,因而光谱仪不需要校准

锁相探测新方法,提高振动被动稳定

正在申请专利的锁相探测新方法,可将红外干涉测量和光谱学的被动稳定性扩展到可见光波段,很大程度优化数据



                                                

基本参数

指标

标准系统

可选升级系统

波长范围

530-950 nm

350-500 nm,950-1300 nm

光学带宽

>60 nm

>200 nm*

分辨率

0.02 nm

0.005 nm

延迟时间

330 ps

高达3.3 ns

延迟时间步长

0.3 fs

0.3 fs

支撑激光重复频率

50kHz-100 GHz

联系我们

干涉精度

0.1fs

0.1fs

尺寸

40*60 cm

40*60 cm

*虽然标准系统可以在这个带宽下正常工作,但我们仍然推荐为宽光学带宽选件购买色散补偿升级配件


全共线多功能超快光谱显微成像系统


全共线多功能超快光谱仪与高精度激光扫描显微镜集成,形成功能强大的全共线多功能超快光谱显微成像系统。还可搭配低温光学恒温器,实现低温多功能超快光谱成像。

全共线多功能超快光谱显微成像系统


光栅式扫描几秒时间便可以获得一个超快成像动画,帮助用户迅速定位到感兴趣的区域进行高分辨的扫描成像。对于部分感兴趣样品位点,利用全共线多功能超快光谱仪,可以获得每个样品位点的全面的电子和振动能级信息。

全共线多功能超快光谱显微成像系统充分结合了全共线多功能超快光谱仪和高分辨激光扫描显微镜的优势,通过弛豫时间成像和多功能光谱成像,允许用户分析样品空间不均匀性与电子结构的关联关系。


MoSe2/WSe2异质结构低功率低温(6K)FWM积分成像光谱(a,b)和弛豫时间成像(c)

 

全共线多功能超快光谱显微成像系统强大的材料表征能力,也可以应用于工业制作环境中的非接触式材料检测,帮助制造商识别原材料品质,避免缺陷材料应用于设备。

常温下,CVD生长WSe2薄片移相时间分布和FWM强度变化


BIGFOOT+NESSIE应用案例:


1. 高精度激光扫描显微镜用于材料表征


美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力


(a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线


【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).

 

2.二维材料中激子相互作用和耦合的成像研究


过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。


(a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量


【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022)

 

3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究


当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。美国德克萨斯大学奥斯汀分校李晓勤教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学研究对于理解导致其形成的配对和磁不稳定性至关重要。


单层MoSe2在不同栅极电压下的单量子重相位振幅谱


【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)


单层MoSe2/WSe2异质结构中的相干相互作用

 


单层MoSe2均匀线宽测量

 

利用硅色心探测金刚石应变张量

 

探测金刚石中的隐藏色心

 

分立量子点之间的相干耦合


 

空腔极化激元的高阶关联作用

 

过渡金属二硫族异质结构中动态激子相互作用和耦合的成像(全共线多功能超快光谱显微成像系统)



1. T. L. Purz et al., Coherent exciton-exciton interactions and exciton dynamics in a MoSe2/WSe2 heterostructure. Physical Review B 104,  (2021).

2. E. W. Martin et al., Encapsulation Narrows and Preserves the Excitonic Homogeneous Linewidth of Exfoliated Monolayer MoSe2. Physical Review Applied 14,  (2020).

3. K. M. Bates et al., Using silicon-vacancy centers in diamond to probe the full strain tensor. Journal of Applied Physics 130, 024301 (2021).

4. C. L. Smallwood et al., Hidden Silicon-Vacancy Centers in Diamond. Phys Rev Lett 126, 213601 (2021).

5. E. W. Martin, S. T. Cundiff, Inducing coherent quantum dot interactions. Physical Review B 97,  (2018).

6. T. M. Autry et al., Excitation Ladder of Cavity Polaritons. Phys Rev Lett 125, 067403 (2020).

7. T. L. Purz et al., Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J Chem Phys 156, 214704 (2022).

8. T. L. Purz, B. T. Hipsley, E. W. Martin, R. Ulbricht, S. T. Cundiff, Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).