飞秒激光微纳加工综合系统-Laser Nanofactory

飞秒激光微纳加工综合系统-Laser Nanofactory


Femtika公司设计并生产的飞秒激光微纳加工综合系统-Laser Nanofactory是一款集增材与减材制造于一体的综合微纳加工系统。与传统的微纳3D打印设备相比,Laser Nanofactory不仅可用于光子学聚合物微纳结构的加工,还可以用于石英,陶瓷,玻璃和金属等材料从毫米到微米尺度的精确加工。设备加工速度可高达50mm/s,加工精度优于100nm,还可实现不同加工工艺间的无缝切换。得益于Femtika先进的飞秒激光技术,Laser Nanofactory在进行微纳加工时所产生的热效应小,加工出的结构边缘锐利,因此特别适合微纳结构的加工。

集增材与减材制造于一体,可用于光子学聚合物,石英,陶瓷,玻璃和金属等材料从毫米到微米尺度的精确加工。

应用领域


•  微纳光学

•  微流控

•  微纳机电器件(M/NEMS)

•  纳米技术

•  生物医药

•  通讯技术

•  传感器件

•  材料表面改性

......


Laser Nanofactory技术参数


飞秒激光

波长

1028 nm ± 5 nm和514 nm ± 5 nm

脉冲持续时间

<290 fs - 10 ps

脉冲能量

>65 μJ

最大平均功率

>4 W

重复率

60 - 1000 kHz

冷却方式

气冷

定位平台

XY方向移动范围

160 mm x 160 mm

Z方向移动范围

60mm

XYZ正交性

3 arc sec

分辨率

1 nm (XY), 2 nm (Z)

最高速度

350 mm/s (YX), 200 mm/s (Z)


精密陶瓷结构加工



2023年2月的材料领域权威期刊《Advanced Materials》报道了德国联邦材料研究与测试研究所(BAM)Sänger等人通过双光子聚合-烧结的技术路径制备了具有拓扑结构的陶瓷超材料。作者使用飞秒激光微纳加工综合系统-Laser Nanofactory中波长为780 nm的激光光源,制备出了最小线宽为500 nm的复杂拓扑钇稳氧化锆(YSZ)陶瓷超材料。研究结果表明:密度范围在1-4 g/cm−3的YSZ陶瓷超材料,其抗压强度就可达4.5 GPa。这一力学性能与传统块体YSZ陶瓷保持一致。该研究弥补了利用双光子聚合技术制备陶瓷材料的空白,借助Femtika的飞秒激光微纳加工综合系统-Laser Nanofactory将陶瓷超材料的制备精度提高到了亚微米尺度。

图1. 通过双光子聚合和1200℃烧结实现3D增材制造。a) x-y平面内线宽为1 μm的立方体中无畸变晶格俯视图。b)45°和90°烧(插图)侧视图。c)放大显示单个单元。d)CAD模型。


Laser Nanofactory制备的多光子聚合物3D结构

 

Laser Nanofactory选择性刻蚀结果展示


Laser Nanofactory在样品上进行激光烧蚀


Laser Nanofactory对器件中的不同材料采用不同加工技术(无缝切换)

[1] A. Butkutė, G. Merkininkaitė, T. Jurkšas, J. Stančikas, T. Baravykas, R. Vargalis, T. Tičkūnas, J. Bachmann, S. Šakirzanovas, V. Sirutkaitis, and L. Jonušauskas, “Femtosecond Laser Assisted 3D Etching Using Inorganic-Organic Etchant”, Materials 2022,15, 2817, (2022).

[2] G. Kontenis, D. Gailevičius, N. Jimenez, and K. Staliunas, “Optical Drills by Dynamic High‑Order Bessel Beam Mixing”, Phys. Rev. Applied 17, 034059, (2022).

[3] D. Čereška, A. Žemaitis, G. Kontenis, G. Nemickas, and L. Jonušauskas, “On‑Demand Wettability via Combining fs Laser Surface Structuring and Thermal Post-Treatment”, Materials 2022,15, 2141, (2022).

[4] A. Butkutė, and L. Jonušauskas, “3D Manufacturing of Glass Microstructures Using Femtosecond Laser”,Micromachines 2021,12, 499, (2021).

[5] D. Andrijec, D. Andriukaitis, R. Vargalis, T. Baravykas, T. Drevinskas, O. Kornyšova, A. Butkutė, V. Kaškonienė, M. Stankevičius, H. Gricius, A. Jagelavičius, A. Maruška, and L. Jonušauskas, “Hybrid additive subtractive femtosecond 3D manufacturing of nanofilter based microfluidic separator”, Applied Physics A (2021).

[6] D. Gonzalez-Hernandez, S. Varapnickas, G. Merkininkaitė, A. Čiburys, D. Gailevičius, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas,”Laser 3D Printing of Inorganic Free‑Form Micro-Optics”, Photonics 2021,8, 577, (2021).

[7] D. Andriukaitis, A. Butkutė, T. Baravykas, R. Vargalis, J. Stančikas, T. Tičkūnas, V. Sirutkaitis, and L. Jonušauskas, “Femtosecond Fabrication of 3D Free-Form Functional Glass Microdevices: Burst-Mode Ablation and Selective Etching Solutions”, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, (2021).

[8] A. Butkutė, T. Baravykas, J. Stančikas, T. Tičkūnas, R. Vargalis, D. Paipulas, V. Sirutkaitis, and L. Janušauskas, “Optimization of selective laser etching (SLE) for glass micromechanical structure fabrication”, Optical Express 23487, Vol. 29, No. 15, 19.07.2021, (2021).

[9] A. Maruška, T. Drevinskas, M. Stankevičius, K. Bimbiraitė-Survilienė, V. Kaškonienė, L. Jonušauskas, R. Gadonas, S. Nilsson, and O. Kornyšova, “Single-chip based contactless conductivity detection system for multi-channel separations”, Anal. Methods, 2021,13,141–146, (2021).

[10] L. Bakhchova, L. Jonušauskas, D. Andrijec, M. Kurachkina, T. Baravykas, A. Eremin, and U. Steinmann,“Femtosecond Laser-Based Integration of Nano-Membranes into Organ-on-a-Chip Systems”, Materials 2020, 13, 3076 (2020).

[11] T. Tičkūnas, D. Paipulas, and V. Purlys, “Dynamic voxel size tuning for direct laser writing,” Opt. Mater. Express 10, 1432-1439 (2020).

[12] T. Tičkūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization”, Appl. Phys. Lett. 116, 031101 (2020).

[13] L. Jonušauskas, T. Baravykas, D. Andrijec, T. Gadišauskas, and V. Purlys, “Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand”, Sci Rep 9, 17533 (2019).

[14] S. Gawali. D. Gailevičius, G. Garre-Werner, V. Purlys, C. Cojocaru, J. Trull, J. Montiel-Ponsoda, and K. Staliunas, “Photonic crystal spatial filtering in broad aperture diode laser”, Appl. Phys. Lett. 115, 141104 (2019).

[15] L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27, 15205-15221 (2019).

[16] L. Jonušauskas, D. Mackevičiūtė, G. Kontenis and V. Purlys, “Femtosecond lasers: the ultimate tool for high precision 3D manufacturing”, Adv. Opt. Technol., 20190012, ISSN (Online) 2192-8584, (2019).

[17] L. Grineviciute, C. Babayigit, D. Gailevicius, E. Bor, M. Turduev, V. Purlys, T. Tolenis, H. Kurt, and K. Staliunas,“Angular filtering by Bragg photonic microstructures fabricated by physical vapour deposition”, Appl. Surf. Sci., 481, 353-359 (2019).

[18] D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive manufacturing of 3D glass-ceramics down to nanoscale resolution”, Nanoscale Horiz., 4, 647-651 (2019).

[19] E. Yulanto, S. Chatterjee, V. Purlys, and V. Mizeikis, “Imaging of latent three-dimensional exposure patterns created by direct laser writing in photoresists”, Appl. Surf. Sci., 479, 822-827 (2019).

[20] L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale”, J. Opt., 20(05301) (2018).

[21] E. Skliutas, S. Kasetaite, L. Jonušauskas, J. Ostrauskaite, and M. Malinauskas “Photosensitive naturally derived resins toward optical 3-D printing,” Opt. Eng. 57(4), 041412 (2018).

[22] L. Jonušauskas, S. Rekštyte, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas,“Hybrid subtractive-additive-welding microfabrication for lab-on-chip applications via single amplified femtosecond laser source,” Opt. Eng. 56(9), 094108 (2017).


飞秒激光微纳加工综合系统-Laser Nanofactory全新上市!集增材与减材制造于一体



减材 - 进行选择性刻蚀过程



增材 - 多光子聚合物3D结构制作



Laser Nanofactory在光子聚合物、玻璃、化学刻蚀等领域的应用!