高精度铁磁共振仪-FMR

高精度铁磁共振仪-FMR

    铁磁共振(FMR)是20世纪40年代发展起来的一种研究物质宏观性能和微观结构的重要实验手段.它利用磁性物质从微波磁场中强烈吸收能量的现象,与核磁共振和顺磁共振一样在磁学和固体物理学研究中占有重要地位。

    磁性薄膜的铁磁共振测量在高频磁学和自旋电子学中有非常重要的应用,例如硬盘的读取头,MRAM,自旋磁矩MRAM和自旋转矩振荡器等。该仪器可以在不同的磁场下测量铁磁共振,并且通过自带的分析软件可得到一下参数:

▪  饱和磁化强度(Ms) 

▪  本征阻尼(alpha)

▪  非均匀展宽(ΔH)

▪  回磁比(γ/2∏)


应用领域:

▪  高频磁学

▪  自旋电子学


在磁性纳米结构中,多种自旋波模式可能起主导作用,所以完全掌握这些模式对最终的器件设计和稳定性非常重要。铁磁共振仪可对这些模式进行随磁场变化的精确测量。铁磁共振仪为磁动力学测量提供了完美的解决方案。整个仪器实惠,即插即用而且易于使用。系统不仅提供了所有微波发生和探测的硬件,而且自带了测量和分析软件。需要用户准备的只是一台计算机和一个带电源的磁体,我们也可以按照用户要求提供计算机和磁体。同时,该设备也可配合Montana恒温器和Quantum Design公司的PPMS进行测试。


配合Monttna公司恒温器使用的FMR,可提供不同温度下和不同磁场下的铁磁共振特性。



Nature Communications:纳米接触磁隧道结中自旋转移力矩驱动的高阶传播自旋波

 

早期的磁隧道结依靠磁场实现磁化翻转,这种方式往往功耗较高,随着工艺尺寸减小, 写入电流将急剧增大, 难以在纳米级磁隧道结中推广应用。1996年, Slonczewski和Berger从理论上预测了一种被称为自旋转移矩(Spin Transfer Torque, STT)的纯电学的磁隧道结写入方式,克服了传统磁场写入的缺点,并且写入电流的大小可随工艺尺寸的缩小而减小。2000年前后, 自旋转移矩在实验上被用于实现金属多层膜的磁化翻转[1]。基于此效应,一种新型的微波振荡器被提出来,即自旋转移力矩纳米振荡器(STNO),利用自旋极化电流诱导纳米磁体磁矩翻转,从而实现了微波振荡。

STNO的典型结构采用一个三明治结构“固定铁磁层FM/非磁性层NM/自由铁磁层FM”来实现,因为内部阻尼的作用,为了维持自振荡,需要106 - 108 A /cm2级的大电流密度,这可以通过在三层膜上使用纳米触点对电流实现空间压缩来实现,这也是小型化磁振子器件中最有效的自旋波注入器。隧穿磁电阻(TMR)比巨磁阻(GMR)高一个或多个数量级,为了实现高效的电子自旋波读出,磁振子器件还必须基于磁隧道结(MTJ)。

 

图1:a.普通纳米触点振荡器结构;b.宽边帽纳米触点振荡器结构;

c.磁滞回线;d.磁电阻测试:内嵌图为自由层的铁磁共振频率和面内磁场关系。
(图片来源: Nature Communications (2018) 9:4374)

 

与顶部金属层相比,MTJ隧穿势垒的导电性相对较低,导致普通纳米触点的大横向电流分流(图1a)。为了使更多的电流通过MTJ,哥德堡大学物理系的J. Åkerman课题组采用了宽边帽结构纳米触点,当MTJ覆盖层从纳米触点向外延伸时,帽状帽层逐渐变薄,并使用一层1.5Ωm2低阻面积(RA)产品的MgO进一步促进隧穿势垒(图1b)。

 

图2:不同驱动电流下功率谱密度和磁场关系,

a Idc= −5 mA, b Idc =−6 mA, c Idc= −7 mA, d Idc = −8 mA, e Idc = −9 mA, and f Idc =−10 mA.

(图片来源: Nature Communications (2018) 9:4374)

 

所得到的器件表现出与纳米触点STNO相关的典型自旋波模式,在不同驱动电流下观测到两个二阶和三阶传播自旋波模态(如图2),这两种模式的波长估计分别为120和74纳米,比150纳米触点小得多。该研究表明这些高阶传播的自旋波将使磁振子器件能够在极高的频率下工作,并大大增加它们的传输速率和自旋波传播长度。



更多应用案例,请您致电 010-85120280 或 写信至 info@qd-china.com 获取。


         NiFeCu合金在不同磁场下,不同温度下的铁磁共振特性。

                 该数据的采集使用了Montana公司的恒温器


Quantum Design International

访问Quantum Design总部