离子辐照磁性精细调控系统Helium-S®

离子辐照磁性精细调控系统Helium-S®


法国Spin-Ion 公司于2017 年成立,源自法国国家研究中心/巴黎- 萨克雷大学的知名课题组。Spin-Ion 公司采用Ravelosona 博士的创新技术,在磁性材料的离子束工艺方面有20 年的经验,已有40 多篇发表文章。Spin-Ion公司推出的产品——可用于多种磁性研究的离子辐照磁性精细调控系统Helium-S®采用创新的离子束技术,可以通过超紧凑和快速的氦离子束设备精确控制原子间的位移,使其能够在原子尺度上加工材料,并通过离子束工艺来调控薄膜和异质结构。目前全球已有20多家科研和工业用户以及合作伙伴使用该技术。2020Spin-Ion公司在国内安装了第一套Helium – S®系统,的技术正吸引来自相关科研圈和工业领域越来越多的关注。

可通过超紧凑和快速的氦离子束设备精确控制原子间的位移,通过氦离子辐照可精确调控磁性薄膜或晶圆的磁学性质。

应用领域:

- 磁性随机存储器(MRAM):自旋转移矩磁性随机存储(STT-MRAM),自旋轨道矩磁性随机存储(SOT-MRAM),磁畴壁磁性随机存储(DW-MRAM)等;

自旋电子学:斯格明子,磁性隧道结,磁传感器等;

磁学相关:磁性氧化物,多铁性材料;

其他:薄膜改性,芯片加工,仿神经器件,逻辑器件等。


产品特点:

- 可通过超紧凑和快速的氦离子束设备精确控制原子间的位移,通过氦离子辐照可精确调控磁性薄膜或晶圆的磁学性质。

- 可提供能量范围:1-30 keV的He+离子束

- 采用创新的电子回旋共振(ECR)离子源

- 可对25 mm的试样进行快速的均匀辐照(几分钟)

- 超紧凑的设计,节省实验空间

- 可与现有的超高真空设备互联


基本参数:

离子束种类

• 氦离子 (He+)

• 可能产生的离子 : 氢离子 (H+)

能量范围 

• 1-30 keV
• 分辨率<50 eV

典型离子通量

在10 μA时,1015 离子数 /平方厘米/分钟

电流范围

1-50 μA (按能量不同)

离子束滤波器

维恩滤波器

离子束扫描

• X-Y双轴位移

• 扫描区域: 25 mm x 25 mm

均匀性

• 强度:<+/- 1%
• 角度:<+/- 3°

离子束纯度

1/10000

真空度

大10-7 mbar

尺寸

• 超紧凑设计
• 长度<1.5 m

软件

• 可实现离子束参数的全面控制

• PLC控制

辐照腔

可对25mm晶圆进行辐照

高温转角选件

可控制不同的辐照角度,可加热温度500°C

快速进样室选件(Load lock)

和辐照腔集成,可过渡25 mm晶圆大小样品


调控界面各向异性性质和DMI

 

低电流诱发的SOT转换获取

 

控制斯格明子和磁畴壁的动态变化

• Helium Ions Put Magnetic Skyrmions on the Track, R.Juge & D.Ravelosona & O.Boulle, Nanoletters, 21, 7, 2989–2996, (2021)

• Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO, Christopher J. Jensen & Dafiné Ravelosona, Kai Liu, Journal of Magnetism and Magnetic Materials 540, 168479 (2021)

• Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation, A.Sud & D.Ravelosona &M.Cubukcu, Scientific report 11, 23626 (2021)

• Magnetic field frustration of the metal-insulator transition in V2O3, J.Trastoy & D.Ravelosona & Y.Schuller, Physical Review B 101, 245109 (2020)

• Controlling magnetism by interface engineering, L Herrera Diez & D Ravelosona, Book Magnetic Nano- and Microwires 2nd Edition, Elsevier (2020)

• Reduced spin torque nano-oscillator linewidth using He+ irradiation, S Jiang & D Ravelosona & J  Akerman, Appl. Phys. Lett. 116, 072403 (2020)

• Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy, X.Zhao & M.Klaui & W.Zhao & D.Ravelosona, Appl. Phys. Lett 116, 242401 (2020)

• Enhancement of the Dzyaloshinskii-Moriya Interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO, L Herrera Diez & D Ravelosona, Physical Review B 99, 054431 (2019)

• Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy, X Zhao & W.Zhao & D Ravelosona, Applied Physics Letter 115, 122404 (2019)

• Suppression of all-optical switching in He+  irradiated Co/Pt multilayers: influence of the domain-wall energy, M El Hadri & S Mangin & D Ravelosona,  J. Phys. D: Appl. Phys. 51, 215004 (2018)

• Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, Sheng Jiang & D.Ravelosona & J.Akerman, AIP Advances 8, 065309 (2018)

• Controlling magnetic domain wall motion in the creep regime in He-irradiated CoFeB/MgO films with perpendicular anisotropy, L.Herrera Diez & D.Ravelosona, Applied Physics Letter 107, 032401 (2015)

• Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution, T.Hingant & D.Ravelosona & V.Jacques, Physical Review Applied 4, 014003 (2015)

• Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films, T Devolder & D Ravelosona, Journal of Applied Physics 113, 203912 (2013)

• Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media, T Hauet & D Ravelosona, Applied Physics Letters 98, 172506 (2011)

• Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions, J-M.Beaujour & A.D. Kent & D.Ravelosona &E.Fullerton, Journal of Applied Physics 109, 033917 (2011)

• Tailoring magnetism by light-ion irradiation, J Fassbender, D Ravelosona, Y Samson, Journal of Physics D: Applied Physics 37 (2004)

• Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, H Bernas & D Ravelosona, Physical review letters 91, 077203 (2003)

Beihang University (China)

University of California San Diego (USA)

University of California Davis (USA)

New York University (USA)

Georgetown University (USA)

Northwestern University (USA)

University of Lorraine (France)

SPINTEC Grenoble (France)

University of Cambridge (UK)

University of Manchester (UK)

Nanyang Technological University

A*STAR (Singapore)

University of Gothenburg (Sweden)

Western Digital (USA)

IBM (USA)

Singulus Technologies (Germany)