3D单分子荧光成像系统-SAFe 360

3D单分子荧光成像系统-SAFe 360


SAFe 360是法国abbelight公司推出的一款基于单分子定位的显微成像(SMLM)的新型3D单分子成像系统,它独有的DAISY技术整合了散光技术和超临界角光技术,能够提高定位精度,xyz三轴定位精度高达15nm,可以提供高清晰三维亚细胞结构图像,支持同时四色成像,可以用于细胞纳米三维成像,观测高清晰亚细胞器结构,实时研究不同的结构功能蛋白的共定位信息,在单分子水平研究分子动力学反应以及细胞间的相互作用等。


加装
TIRF
PALM
STORM
SPT

smFRET

...... 


兼容
Confocal
Spinning-Desk
Widefield
SIM

STED

......


设备参数


+ 成像模式:PALM、STORM、PAINT、smFRET 、SPT

+ 光源模式:Epi、TIRF、HILO

+ 高分辨率:15 nm的XYZ轴分辨率

+ 超大视野:200 × 200 μm2的视野

+  一次可同时采集1.2 μm深度图像信息

+  高图像深度:10 μm

+  实时漂移矫正

+  高四色同时成像

+  活细胞成像模式


配套试剂


Smart kit


•  10 doses per box

•  200 µL per dose

•  30 sec prepartion

•  2 months in a fridge

•  2 weeks on sample



Compatible dyes


•  Atto 488, WGA-AF®488

•  AF®532, CF®532, Cy3b

•  AF®555, AF®594, CF®555, AF®568, CF®568, Cy5, MemBriteTM 568, TMR

•  AF®647, CF®647, AF®680, CF®680, MemBriteTM 640, Actin-stain 670, SiR647



■  细胞质膜上的内陷结构与功能研究


真核细胞的细胞质膜是一个不均一体系,包含大量脂类组成和生物物理特性不同的区域。这些蛋白脂类区域使质膜产生内陷,而内陷在胞吞过程中起重要作用。在这些质膜区域中,网格蛋白包被的小窝(clathin coated pits, CCP)和胞膜窖(caveolae)由于表面有明显的蛋白包被,很容易用电镜成像等方法观测到。CCP呈80-120 nm的球形结构,包被有网格蛋白和衔接蛋白。网格蛋白调控的内吞作用通路(CME)通过被膜小窝实现胞吞。Caveolae是50-80 nm的内陷结构,在信号转导,膜运输,胆固醇运输,机械传感等过程中起作用,在受到机械应力作用的细胞,如脂肪细胞,内皮细胞和肌细胞中含量较高。有研究发现了小凹的产生及与胞内体的融合,但Caveolae是否在胞吞中起作用尚无定论。

在下图的实例中,研究人员使用了Abbelight的成像3D单分子荧光成像系统-SAFe 360分辨出了内皮细胞中的Clathrin和Caveolae。结果显示了清晰、无重叠的荧光分布,与电镜成像结果一致。

图1. Abbelight SAFe360系统重现质膜上蛋白脂类区域的蛋白分布


图2. 通过SAFe360的同时多色成像功能可以清晰、无重叠地区分Clathrin 和Caveolae,进一步研究Clathrin 和Caveolae的内吞作用通路的相互关系。



■  大肠杆菌RNA聚合酶的空间分布与动力学研究


大肠杆菌中的RNA聚合酶(RNAP)空间上呈拟核形状分布,是核糖体RNA(rRNA)的转录中心。下方实例使用Abbelight SAFe 360系统通过PALM超分辨成像与单分子追踪(sptPALM)解析大肠杆菌RNAP的纳米尺度空间分布与动力学,进而研究转录调控机制。


图1. (A)Denndra2标记RNAP在大肠杆菌中分布定位(定位精度约为15 nm);(B)通过DBSCAN算法对大肠杆菌中RNA聚合酶分布进行团簇分析。


  

图2. 在活细胞中以200 FPS(5 ms/帧)的采集速度对大肠杆菌中Dendra2标记的RNAP分子进行单分子追踪以研究单个RNAP分子运动轨迹,按照运动状态分为静态(红色,即转录中)或动态(紫色,扩散运动)。

 


3D线粒体结构


核孔复合物


老鼠海马神经元


微管蛋白网络




[1]Rajbanshi, Binita, et al. "Localization, induction, and cellular effects of tau phosphorylated at threonine 217." Alzheimer's & Dementia (2023).

[2] Pagliuca, M., et al. "38P Single molecule localization microscopy for extracellular vesicles detection in cancer." Annals of Oncology 33 (2022): S1395-S1396.

[3] Robaszkiewicz, A., and K. Gronkowska. "36P EP300 as an epigenetic target in p53 wild-type tumors treated with cisplatin." Annals of Oncology 33 (2022): S1395.

[4] He, Jin, et al. "Heterozygous Seryl‐tRNA Synthetase 1 Variants Cause Charcot–Marie–Tooth Disease." Annals of Neurology (2022).

[5] Gazzola, Morgan, et al. "Microtubules self-repair in living cells." Current Biology (2022).

[6] Liu, Wei, et al. "Mitofusin‐2 regulates leukocyte adhesion and β2 integrin activation." Journal of Leukocyte Biology 111.4 (2022): 771-791.

[7] Portes, Marion, et al. "Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts." Elife 11 (2022): e75610.

[8] Wessel, Aimee K., et al. "Escherichia coli membrane microdomain SPFH protein HflC interacts with YajC and contributes to aminoglycoside and oxidative stress tolerance." bioRxiv (2022).

[9] Radhakrishnan, A. V., et al. "Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration." The Integrin Interactome. Humana, New York, NY, (2021). 85-113.

[10] Jouchet, Pierre, et al. "Nanometric axial localization of single fluorescent molecules with modulated excitation." Nature Photonics (2021): 1-8.

[11] Pernier, Julien, et al. "Myosin 1b flattens and prunes branched actin filaments." Journal of cell science 133.18 (2020).

[12] Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: optimized single molecule localization microscopy." Methods 174 (2020): 100-114.

[13] Mau, Adrien, et al. "Fast scanned widefield scheme provides tunable and uniform illumination for optimized SMLM on large fields of view." bioRxiv (2020).

[14] Orre, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." bioRxiv (2020).

[15] Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.

[16] Woodhams, Stephen G., et al. "Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain." Pain 160.11 (2019): 2641-2650.

[17] Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).

[18] Denis, Kevin, et al. "Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease." Nature microbiology 4.6 (2019): 972.

[19] Szabo, Quentin, et al. "TADs are 3D structural units of higher-order chromosome organization in Drosophila." Science advances 4.2 (2018): eaar8082. 

[20] Boudjemaa, Rym, et al. "Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus." Antimicrobial agents and chemotherapy 62.7 (2018): e00023-18.

[21] Culley, Siân, et al. "Quantitative mapping and minimization of super-resolution optical imaging artifacts." Nature methods 15.4 (2018): 263.

[22] Berger, Stephen L., et al. "Localized myosin II activity regulates assembly and plasticity of the axon initial segment." Neuron 97.3 (2018): 555-570.

[23] Cabriel, Clément, et al. "Aberration-accounting calibration for 3D single-molecule localization microscopy." Optics letters 43.2 (2018): 174-177. 

[24] Bouissou, Anaïs, et al. "Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring." ACS nano 11.4 (2017): 4028-4040. 

[25] Sellés, Julien, et al. "Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy." Scientific reports 7.1 (2017): 14732.

[26] Bourg, Nicolas, et al. "Direct optical nanoscopy with axially localized detection." Nature Photonics 9.9 (2015): 587. 













1分钟快速了解3D单分子荧光成像系统