大视野单分子超分辨模块-SAFe 180

大视野单分子超分辨模块-SAFe 180

SAFe 180是法国abbelight公司推出的一款基于单分子定位技术的显微成像(SMLM)的超分辨模块。该设备具有高度灵活性,能够搭载在绝大多数的倒置显微镜上,并且仅仅需要使用一个C-mount(CCD或CMOS所连接的部位)接口,即可将您的倒置显微镜直接升级为超分辨成像系统。并且改造过程不会破坏原有显微镜系统的光路和功能,不会与其它的显微镜改造相冲突。

本设备既在配置上的选择也十分灵活。它既可以作为显微镜的一个升级配件来改造您的显微镜,也拥有完整的超分辨系统。让用户在获得专业的图像质量的同时,获得经济合理的超分辨升级方案。


加装
TIRF
PALM
STORM
SPT

smFRET

...... 


兼容
Confocal
Spinning-Desk
Widefield
SIM

STED

......


提供STORM、PLAM、PAINT、SPT、smFRET成像模式

设备参数


+  模块化系统:可接到大多数倒置荧光显微镜

+  成像模式:PALM、STORM、smFRET、PAINT、SPT

+  光源模式:Epi、TIRF、HILO

+  超高分辨率:25 nm的XY轴分辨率,50nm的Z轴分辨率

+  超大视野:180 × 180 μm2的视野

+  全自动化控制

+  无需高功率激光光源

配套试剂


Smart kit


•  10 doses per box

•  200 µL per dose

•  30 sec prepartion

•  2 months in a fridge

•  2 weeks on sample



Compatible dyes


•  Atto 488, WGA-AF®488

•  AF®532, CF®532, Cy3b

•  AF®555, AF®594, CF®555, AF®568, CF®568, Cy5, MemBriteTM 568, TMR

•  AF®647, CF®647, AF®680, CF®680, MemBriteTM 640, Actin-stain 670, SiR647





■  单分子定位技术研究线粒体


线粒体是一种存在于大多数细胞中的由两层膜包被的细胞器结构,大部分线粒体尺寸小于1微米,是细胞制造能量的细胞器,还参与细胞分化,增殖代谢等诸多生理学过程。同时线粒体是对各种损伤为敏感的细胞器之一,细胞损伤常见的病理改变可概括为线粒体数量、大小和结构的改变等。通过研究线粒体结构与功能的变可以研究各种细胞损伤以及不同线粒体疾病。通过单分子定位(SMLM)技术可以精确观测线粒体的三维结构和形态,研究特定蛋白表达以及药物处理后诸如线粒体肿大等形态结构的变化, 观测线粒体的融合与分裂以及衰老对于这一过程的影响等。


1. 线粒体三维结构观测

线粒体三维结构

线粒体(黄)DNA(蓝)


2. 特定蛋白表达与否对线粒体形态变化影响

undefined

undefined

左右分别为不同蛋白表达后线粒体的形态,不同的蛋白表达后线粒体的宽度不同


3. 小分子药物对于线粒体融合的影响

图A为未经过药物小分子处理的线粒体,B为年老的细胞经过小分子处理后的线粒体,C为年轻的细胞经过小分子处理后的线粒体。直观对比可以发现,此小分子有助于线粒体的融合,同时年轻的细胞的融合效果好于年老的细胞



超大的视野神经元


伪足小体


模式生物


微管蛋白





[1]Rajbanshi, Binita, et al. "Localization, induction, and cellular effects of tau phosphorylated at threonine 217." Alzheimer's & Dementia (2023).

[2] Pagliuca, M., et al. "38P Single molecule localization microscopy for extracellular vesicles detection in cancer." Annals of Oncology 33 (2022): S1395-S1396.

[3] Robaszkiewicz, A., and K. Gronkowska. "36P EP300 as an epigenetic target in p53 wild-type tumors treated with cisplatin." Annals of Oncology 33 (2022): S1395.

[4] He, Jin, et al. "Heterozygous Seryl‐tRNA Synthetase 1 Variants Cause Charcot–Marie–Tooth Disease." Annals of Neurology (2022).

[5] Gazzola, Morgan, et al. "Microtubules self-repair in living cells." Current Biology (2022).

[6] Liu, Wei, et al. "Mitofusin‐2 regulates leukocyte adhesion and β2 integrin activation." Journal of Leukocyte Biology 111.4 (2022): 771-791.

[7] Portes, Marion, et al. "Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts." Elife 11 (2022): e75610.

[8] Wessel, Aimee K., et al. "Escherichia coli membrane microdomain SPFH protein HflC interacts with YajC and contributes to aminoglycoside and oxidative stress tolerance." bioRxiv (2022).

[9] Radhakrishnan, A. V., et al. "Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration." The Integrin Interactome. Humana, New York, NY, (2021). 85-113.

[10] Jouchet, Pierre, et al. "Nanometric axial localization of single fluorescent molecules with modulated excitation." Nature Photonics (2021): 1-8.

[11] Pernier, Julien, et al. "Myosin 1b flattens and prunes branched actin filaments." Journal of cell science 133.18 (2020).

[12] Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: optimized single molecule localization microscopy." Methods 174 (2020): 100-114.

[13] Mau, Adrien, et al. "Fast scanned widefield scheme provides tunable and uniform illumination for optimized SMLM on large fields of view." bioRxiv (2020).

[14] Orre, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." bioRxiv (2020).

[15] Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.

[16] Woodhams, Stephen G., et al. "Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain." Pain 160.11 (2019): 2641-2650.

[17] Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).

[18] Denis, Kevin, et al. "Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease." Nature microbiology 4.6 (2019): 972.

[19] Szabo, Quentin, et al. "TADs are 3D structural units of higher-order chromosome organization in Drosophila." Science advances 4.2 (2018): eaar8082. 

[20] Boudjemaa, Rym, et al. "Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus." Antimicrobial agents and chemotherapy 62.7 (2018): e00023-18.

[21] Culley, Siân, et al. "Quantitative mapping and minimization of super-resolution optical imaging artifacts." Nature methods 15.4 (2018): 263.

[22] Berger, Stephen L., et al. "Localized myosin II activity regulates assembly and plasticity of the axon initial segment." Neuron 97.3 (2018): 555-570.

[23] Cabriel, Clément, et al. "Aberration-accounting calibration for 3D single-molecule localization microscopy." Optics letters 43.2 (2018): 174-177. 

[24] Bouissou, Anaïs, et al. "Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring." ACS nano 11.4 (2017): 4028-4040. 

[25] Sellés, Julien, et al. "Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy." Scientific reports 7.1 (2017): 14732.

[26] Bourg, Nicolas, et al. "Direct optical nanoscopy with axially localized detection." Nature Photonics 9.9 (2015): 587. 









1分钟快速了解大视野单分子超分辨模块