原位细胞3D切割成像平台-CellSurgeon

原位细胞3D切割成像平台-CellSurgeon

德国LLS ROWIAK公司推出的CellSurgeon是一款精准、非接触的3D纳米激光活细胞显微成像切割系统。它独具特色的多光子切割技术,能够从细胞内或组织内的任意点开始切割,实现真正意义上的定点操作。并且CellSurgeon还配有MPM成像模块,能够实现实时的荧光标记或无标记成像,精准定位所需操作的部位和实时观测细胞动态变化。通过CellSurgeon研究者能够进行实时精准的活细胞、组织操作和观测,帮助研究者更好的研究原位细胞的生理活性。


应用领域

■  染色体切割

■  亚细胞器的实时观测切割

■  原位组织的单细胞分离

■  薄组织的显微切割

■  基于激光的光转染技术

CellSurgeon的切割方式


双光子切割 VS 单光子切割

可从组织中的任意部位开始切割



CellSurgeon的切割方式

为何选用CellSurgeon?


■  多光子实时成像追踪

■  精准的3D切割

■  无需前处理即可直接切割

■  直接的原位切割

■  活细胞或组织均可直接切割

■  最大限度保存生物信息的完整

■  能够兼容多种型号的显微镜



基本参数


■  激光:飞秒近红外激光,单波长或可变

■  扫描器:双独立扫描镜

■  扫描精度:700 X 700 ~ 300 X 100

■  最大分辨率:700 X 700(1,43 f/s)

■  最大扫描速度:300 X 100(10 f/s)

■  切割模式:不同波长的2D或3D精准手动或自动切割

■  控制器:驱动所有机动单元:显微镜、扫描器、 z 驱动器、扫描台以及所有相关附加配件


■  从细胞到组织的动态观测与切割


CellSurgeon能够胜任各种类型的切割任务,无论是的染色质还是活体组织,它都能很好地胜任。

该设备可以兼容多种型号的显微镜,并且支持显微操作针等配件,能够在切割后实现对切割部分的转移。


从细胞团中切除的细胞并用微毛细管将提取细胞切出


固定的CHO的Alexa488标记的毒伞素切割


 

活U2OS细胞的FP635标记的肌动蛋白的切割


活GM-7373牛主动脉内皮细胞的

MitoTracker Orange ®的单线粒体消融实验

 

 

活GM-7373牛主动脉内皮细胞诱导凋亡实验




人发丝切割


 染色质切割


激光介导的细胞转染



白蚁的组织切割


小鼠活体血管切割


 ■  基于激光的原位细胞转染

 

无论是电转还是脂质体都需要先将细胞悬浮才能够进行入转染,但是Cellsurgeon能够在原位对细胞进行光穿孔实现细胞的转染,这种技术对于研究原位的细胞转染有着重大意义。


使用CellSurgeon对ZMTH3细胞进行转染pEGFP-C1、pEGFP-HMGA2、pEGFP-HMGB1经过48小时的图像


1. Donath, Sören, Leon Angerstein, Lara Gentemann, Dominik Müller, Anna E. Seidler, Christian Jesinghaus, André Bleich, Alexander Heisterkamp, Manuela Buettner, and Stefan Kalies. (2022). "Investigation of Colonic Regeneration via Precise Damage Application Using Femtosecond LaserBased Nanosurgery" Cells 11, no. 7: 1143. 

2. Müller, Dominik, Sören Donath, Emanuel G. Brückner, Santoshi Biswanath Devadas, Fiene Daniel, Lara Gentemann, Robert Zweigerdt, Alexander Heisterkamp, and Stefan M.K. Kalies. (2021). "How Localized Z-Disc Damage Affects Force Generation and Gene Expression in Cardiomyocytes" Bioengineering 8, no. 12: 213. 

3. Müller D, Klamt T, Gentemann L, Heisterkamp A, Kalies SMK (2021) Evaluation of laser induced sarcomere micro-damage: Role of damage extent and location in cardiomyocytes. PLoS ONE 16(6): e0252346. 

4. Bouyer M; Garot C; Machillot P; Vollaire J; Fitzpatrick V; Morand S; Boutonnat J; Josserand V; Bettega G; Picart C (2021) 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect Materials Today Bio 11 (2021) 100113.

5. Verhaegen C, Kautbally S, Zapareto D C, Brusa D, Courtoy G, Aydin S, Bouzin C, Oury C, Bertrand L, Jacques P J, Beauloye C, Horman S, Kefer J (2020) Early thrombogenicity of coronary stents: comparison of bioresorbable polymer sirolimus-eluting and bare metal stents in an aortic rat model. Am J Cardiovasc Dis. 10(2):72-83. 

6. Zeller-Plumhoff B, Malicha C, Krüger D, Campbella G, Wiesea B, Galli S, Wennerberg A, WillumeitRömer R, Wieland F (2020) Analysis of the bone ultrastructure around biodegradable Mg–x Gd implants using small angle X-ray scattering and X-ray diffraction Acta Biomaterialia 101 637–645.

7. Müller, D., Hagenah, D., Biswanath, S., Coffee, M., Kampmann, A., Zweigerdt, R., Heisterkamp, A., Kalies, S.M.K., (2019). Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes. Scientific Reports 9, 3625.

8. Rousselle S D , Wicks J R, Tabb B C, Tellez A, O’Brien M (2019) Histology Strategies for Medical Implants and Interventional Device Studies Toxicologic Pathology Vol. 47(3) 235-249.

9. Neuerburg C, Mittlmeier L M, Keppler A M, Westphal I, Glass Ä, Saller M M, Herlyn P K E, Richter H, Böcker W, Schieker M, Aszodi A, Fischer D C (2019) Growth factor-mediated augmentation of long bones: evaluation of a BMP-7 loaded thermoresponsive hydrogel in a murine femoral intramedullary injection model. Journal of Orthopaedic Surgery and Research 14 297. 

10. Kunert-Keil C, Richter H, Zeidler-Rentzsch I, Bleeker I, Gredes T (2019) Histological comparison between laser microtome sections and ground specimens of implant-containing tissues. Annals of Anatomy 222 153–157.


部分用户单位:

Bayer HealthCare, Cardiovascular Research

Leibniz University Hannover, Institute of Biophysics

Leibniz University Hannover, Institute for Quantum Optics-1,-2

University of Rostock, Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine

Institute for Bioprocessing and Analytical Measurement Techniques (iba)

mfd Diagnostics GmbH 







染色体切割