非接触亚微米分辨红外拉曼同步测量系统—mIRage(生物领域)

非接触亚微米分辨红外拉曼同步测量系统—mIRage(生物领域)

一款划时代的新型红外光谱系统!


红外一直以来都是一种经典的结构分析的光谱手段,它能够有效反映分子在组分中的分布,并且无需标记。但是由于其制样困难,信噪比差、无法观测溶液中的样品等缺点,使得红外在生物领域上难以满足科研工作者的需要。

mIRage是PSC公司新研发的超高分辨、非接触、高信噪比的新型红外显微光谱仪,较传统的FTIR显微镜,mIRage分辨率有显著提升,可达400~500 nm。更难能可贵的是,它独特的热膨胀红外测量技术,能够做到真正的环境友好,能够在溶液中直接分析细胞、组织、材料表面的红外光谱。此外mIRage还可升级拉曼光谱模块,通过将红外光谱与拉曼光谱的共同分析,能够帮助研究者快速确定所分析谱图的结构,寻找传统荧光所不能找到的结构。



O-PTIR的优势:

   

• 亚微米空间分辨的IR光谱和成像(~500 nm)

• 与透射模式相媲美的反射模式下的图谱效果

• 非接触测量模式—使用简单快捷,无交叉污染风险

• 很少或无需样品制备过程(无需薄片), 可测试厚样品。

• 可透射模式下观察溶液中的样品

• 实现同时同地相同分辨率的IR和Raman测试。


   






■  亚微米红外拉曼同步测量技术助力生物材料对骨组织矿化的研究取得重要进展!


由于红外光谱技术对于分子结构的敏感性,能够在无任何标记的情况下实现对生物样品成分的鉴定和分布解析,对于不便于荧光标记的生物组分鉴别十分有利,使得其在生命科学领域的应用越来越广泛。

近期Maryam Rahmati等人使用亚微米红外拉曼同步测量技术在Materials Today上报道骨生物材料对骨骼再生的研究中成功揭示了红外显微镜在组织样品分析中的潜力。众所周知,生物骨骼有机材料能够模仿天然组织功能,是作为受损骨骼良好的替代物。Maryam等通过设计两个富含脯氨酸的无序肽(IDP2和IDP6)并将它们添加到SmartBone(SBN)生物杂交替代物中,成功合成了具备改善由于植入物导致的组织矿化问题的新型材料。通过对家猪开颅损伤后8周和16周愈合情况的研究,作者团队发现这种材料能够很好的帮助颅骨愈合,如下图所示。

研究富含脯氨酸的无序肽的成骨和生物矿化作用。(a)四组监测骨愈合情况的代表图包括假手术、SmartBone(SBN)、SBN + P2和sbn+P6(n = 8)。(b,c) mCT分析骨容积比的代表图像和统计数据(Obj. V/TV)、骨表面/体积比(Obj.S/Obj.v)和骨表面密度(Obj.S/TV),比例尺: 4 mm,(N = 8)。(d–g)研究钙化样品的矿化/非矿化的代表图像和统计数据。(h)碱性磷酸酶(ALP)和抗酒石酸酸性磷酸酶(TRAP)染色法研究脱钙骨中成骨细胞和破骨细胞的活性。




■  亚微米空间分辨同步IR + Raman光谱成像分析 PLA/PHA生物微塑料薄片


来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且相对便宜,但同时也引发了人们对于塑料垃圾在环境中累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是终回归自然,安全而又环保。

虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的功能材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用基于光学光热红外技术(O-PTIR)的新一代非接触亚微米分辨红外拉曼同步测量系统mIRage对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在机理

PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域同步O-PTIR红外和拉曼光谱分析(左为红外,右为拉曼)。


O-PTIR作为一种新型的光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了许多限制。首先,O-PTIR可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射极限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于FTIR的谱图,从而避免了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),O-PTIR的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在O-PTIR方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。


参考文献:

[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure, DOI: 10.1016/j.molstruc.2020.128045.




■   科学家借助mIRage成功直观揭示神经元中淀粉样蛋白聚集机理


老年神经退行性疾病,如阿尔茨海默症(AD)、肌萎缩性侧索硬化症、Ⅱ型糖尿病等,目前困扰着全世界大约5亿人,且这个数字仍在不断迅速增长。尤其是阿尔兹海默症(占70%以上),目前仍未有行之有效的诊断方法,因此无法得到有效的治疗或预防。尽管当代病理学研究已经证实这种病理变化与具有神经毒性的β淀粉样蛋白质的聚集有关,但其在神经元或脑组织中的聚集机制目前尚不清楚。现有的方法, 如电子显微镜、免疫电子显微镜、共聚焦荧光显微镜、超分辨显微镜,通常都需要对样品进行化学加工(标记染色等),可能会对淀粉样蛋白结构本身造成影响。而非标记方法,如表面增强拉曼光谱(SERS)和傅里叶变换红外光谱(FTIR), 前者受限于亚细胞水平上的低信噪比、自发荧光及不可逆的光损伤,后者其空间分辨率受限于红外光波长(≈5–10 μm),且光谱可解译性和准确性受到弹性细胞光散射所产生的米氏散射效应(Mie scattering effects)的严重影响,使得直接在亚微米尺度上研究淀粉样蛋白质在神经元内的聚集行为十分困难。


近日,瑞典隆德大学的Klementieva教授团队与美国PSC公司的Mustafa Kansiz博士合作,使用全新非接触式亚微米分辨红外测量系统,在亚微米尺度上研究了淀粉样蛋白沿着神经突直到树突棘的聚集行为(图1B和C),这是以往的实验技术手段所不可能实现的该技术是在非接触模式下工作,不会对神经元造成损伤,这在研究脆弱或粘性的物质时显得尤为重要。另外,该技术还能获得亚微米尺度的红外光谱,且不含由于背景失真或米氏散射造成的散射伪影。新的技术进步表明,全新的非接触式亚微米分辨红外测量系统mIRage现在可以用来做活细胞成像,并保持相同的亚微米空间分辨率。在这种情况下,全新的非接触式亚微米分辨红外测量系统有望在β片层结构在活神经元的突触附近的化学成像中发挥关键作用,并提供一个新的机会来研究神经毒性淀粉样蛋白如何从一个患病的神经元传播到一个健康的神经元,揭示阿尔茨海默症的形成和发展机制。该工作发表在2020年的Advanced Sciences上(DOI: 10.1002/advs.201903004)。

 

图1. (A) 美国PSC公司非接触式亚微米分辨红外测量系统mIRage实物图;(B)亚微米红外成像示意图:神经元树突的AFM形貌图,其中神经元直接在CaF2基底下生长。mIRage采用两束共线性光束: 532 nm可见(绿色)提取光束和脉冲红外(红色)探测光束,样品的光热响应被检测为样品由于对脉冲红外光束的吸收而引发的绿色光部分强度的损失,使红外检测的空间分辨率提高到≈500 nm. (C) 小鼠大脑皮层初级神经元, 在CamKII促进下表达为tdTomato荧光蛋白,使得神经元结构填满红色,图片标尺为20 μm。(D) 图C区域放大图片,箭头指示树突上的神经元刺。


更多详细信息请参考:https://qd-china.com/zh/news/detail/2003031055084


参考文献:Super‐Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons.




■  非接触式亚微米O-PTIR光谱成像技术研究高内相乳液聚合演变过程


在高内相乳液(HIPE)中,初始离散单元在聚合过程中或之后转变成由窗口高度互联聚合体的时间和方式,一直是一个有争议的问题。2D O-PTIR(optical photothermal infrared)新表面成像技术为探索这个polyHIPE的窗口形成机理提供了机会,只要检测目标区域的大小相对于分辨率来说足够大。2D PTIR技术基于以下工作原理:一束红外激光聚焦在样品表面;被吸收的红外光使样品升温,诱导光热响应;这种本征的光热响应被一束可见光所检测;因此可与FTIR透射模式质量相媲美的图谱被使用反射模式所得到。该技术有四大优势:使用可见光为检测光,可以将分辨率提高到 ~ 500 nm;非接触式的光学显微镜;分辨率不依赖于红外光波长;不会产生弥散的伪影。同济大学万德成教授课题组与Photothermal Spectroscopy Corp公司合作,利用光学光热红外技术(O-PTIR)技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对polyHIPE的聚合体进行了红外光谱和成像分析,探究其演变过程及形成机理。

图1. A) 3% 表面活性剂用量诱导的polyHIPE选取区域的光学照片, B) 相应的mIRage 2D O-PTIR图像。C) 插图为典型的选定区域附近的局部表面形貌(通过SEM),D) 插图为立方状样品的光学照片(≈5×5×5 cm3)。(B)图条件:红色代表强烈的反应,绿色代表几乎没有反应,而黄色代表对1492 cm-1处的激光束的中等反应。

图2. 在1600 (绿色)和1492 cm -1(红色)激光束照射下的多聚体表面的mIRage 2D O-PTIR图像。B) 一系列的FTIR光谱提取采样点(箭头尾)。每个采样点的高度比为1600/1492 cm-1,如(C)所示,相邻的采样点为250 nm





更多应用案例,请您致电 010-85120277/78/79/80 或 写信 info@qd-china.com 获取。

■  观察神经元中的蛋白结构变化


使用非接触式亚微米分辨红外测量系统mIRage观察初级神经元结构。 (A) 在1650 cm-1处获得的神经元的红外图像,显示了蛋白质的分布; (B)中对应原始红外光谱的位置用数字和圆点表示,图片标尺为20 μm;(C)在1650 cm-1处获得的树突的红外图像,数字表示D图中获得光谱的位置,图片中标尺为20 μm;(D)在C图中两点处取的归一化红外光谱,体现了该方法的亚微米空间分辨率,红色箭头表示蛋白质结构的化学变化。




■  红细胞的Raman和红外图谱分析


左:70*70 µm范围的血红细胞的光学照片;

中:红色条框区域在1583cm-1处的Raman照片;

右:红血细胞选择区域的同步的IR和Raman图谱




■  透射模式下溶液中活细胞的亚微米O-PTIR图谱和成像


左:水中上皮细胞的光学照片;

右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 µm的脂肪包体。




■  药物/高分子混合物






左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片;

中:在1760 cm-1出的高光谱图像,显示了PLGA在混合物中的分布,图像尺寸;40 µm x 40 µm;

右:在1666 cm-1出的高光谱图像,显示了Dexamethasone在混合物中的分布,图像尺寸40 µm x 40 µm。


发表文章应用领域
Optical photothermal infrared spectroscopy for nanochemical analysis of pharmaceutical dry powder aerosols. Khanal, D. et al.International Journal of Pharmaceutics, 2023Pharmaceuticals
Fluorescently Guided Optical Photothermal Infrared Microspectroscopy for Protein-Specific Bioimaging at Subcellular Level. Prater, C et al.Journal of Medicinal Chemistry, 2023Life Science
Innovative Vibrational Spectroscopy Research for Forensic Application. Weberm A. et al.Analytical Chemistry, 2023Forensic
High-Throughput Antimicrobial Susceptibility Testing of Escherichia coli by Wide-Field Mid-Infrared Photothermal Imaging of Protein Synthesis. Guo, Z. et al.Analytical Chemistry, 2023Life Science
Prebiotic-Based Nanoamorphous Atorvastatin Attenuates Nonalcoholic Fatty Liver Disease by Retrieving Gut and Liver Health. Cui, J, et al.Small Structures, 2023Life Science
Optical photothermal infrared spectroscopy: A novel solution for rapid identification of antimicrobial resistance at the single-cell level via deuterium isotope labeling. Shams, S. et al.Front. Microbiol., 2023Life Science
Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy. Jubb, A. et al.Organic Geochemistry, 2023Paleontology
A review on analytical performance of micro- and nanoplastics analysis methods. Thaiba, B.M. et al.Arabian Journal of Chemistry, 2023Microplastics
Video-rate Mid-infrared Photothermal Imaging by Single Pulse Photothermal Detection per Pixel. Xin, J. et al.bioRxiv, 2023Life Science
Microfluidics as a Ray of Hope for Microplastic Pollution. Ece, E. et al.biosensors, 2023Microplastics
Critical assessment of approach towards estimation of microplastics in environmental matrices. Raj, D. et al.Land Degradationa and Development, 2023Microplastics
Development of a Binary Digestion System for Extraction Microplastics in Fish and Detection Method by Optical Photothermal Infrared. Yan, F. et al.Frontiers in Marine Science, 2022Microplastics
Automated analysis of microplastics based on vibrational spectroscopy: are we measuring the same metrics?. Dong, M. et al.Analytical and Bioanalytical Chemistry, 2022Microplastics
Vitamin D and Calcium Supplementation Accelerate Vascular Calcification in a Model of Pseudoxanthoma Elasticum. Bouderlique, E. et al.International Journal of   Molecular Sciences, 2022Pharmaceuticals
Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue. Mankar, R. et al.Applied Spectroscopy, 2022Biomedical and life science
Identification of spectral features differentiating fungal strains in infrared absorption spectroscopic images. Stancevic, D. et al.Lund Univ, Ugrad Thesis, 2022Bio and environmental
Optical photothermal infrared spectroscopy can differentiate equine osteoarthritic plasma extracellular vesicles from healthy controls. Clarke, E. et al.BioXvid, 2022BioXvid
Correlative imaging to resolve molecular structures in individual cells: substrate validation study for super-resolution infrared microspectroscopy. Paulus, A.  et al.Nanomedicine: Nanotechnology, Biology, and Medicine, 2022Biomedical and life science
Leveraging high-resolution spatial features in mid-infrared spectroscopic imaging to classify tissue subtypes in ovarian cancer. Gajjela, C. et al.BioarXiv, 2022Biomedical and life science
APPLICATION OF OPTICAL PHOTOTHERMAL INFRARED (O-PTIR) SPECTROSCOPY TO ASSESS BONE COMPOSITION AT THE SUBMICRON SCALE. Reiner, E. et al.Temple Univ, Master thesis, 2022Biomedical and life science
Matrix/Mineral Ratio and Domain Size Variation with Bone Tissue Age: a Photothermal Infrared Study. Ahn, T. et al.Journal of Structural Biology, 2022Journal of Structural Biology
Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level. Lime, C. et al.Chemical Science, 2022Biomedical and life science
Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Yang, R. et al.International Journal of Pharmaceutics, 2022Pharmaceuticals
Synovial joint cavitation initiates with microcavities in interzone and is coupled to skeletal flexion and elongation in developing mouse embryo limbs. Kim, M. et al.Biology Open, 2022Biomedical and life science
Steam disinfection enhances bioaccessibility of metallic nanoparticles in   nano-enabled silicone-rubber baby bottle teats, pacifiers, and teethers. Su, Y. et al.Journal of Environmental Science, 2022Microplastics
NOVEL SPECTROSCOPY TECHNIQUES USED TO INTERROGATE EQUINE OSTEOARTHRITIC EXTRACELLULAR VESICLES. Clarke, E. et al.Osteoarthritis and Cartilage, 2022Biomedical and life science
Using   mid infrared to perform investigations beyond the diffraction limits of microcristalline pathologies: advantages and limitation of Optical PhotoThermal IR spectroscopy. Bazin, D. et al.Comptes Rendus. Chimie, 2022Biomedical and life science
Optical   photothermal infrared spectroscopy can differentiate equine osteoarthritic plasma extracellular vesicles from healthy controls. Clarke, E. et al.Analytical Methods, 2022Biomedical and life science
Probing Individual Particles Generated at the Freshwater–Seawater Interface through Combined Raman, Photothermal Infrared, and X-ray Spectroscopic Characterization. Mirrielees, J. et al.ACS Meas. Sci. Au, 2022Environmental and Microplastics
Parts-per-Million Detection of Trace Crystal Forms Using AF-PTIR Microscopy. Razumtcev, A. et al.Analytical Chemistry, 2022Pharmaceuticals
Ultrafast   Widefield Mid-Infrared Photothermal Heterodyne Imaging. Paiva, E. et al.Analytical Chemistry, 2022Photonics, bio
Chapter 8 - Raman-integrated optical photothermal infrared microscopy: technology and applications. Li, X. et al.Molecular and Laser Spectroscopy, 2022Photonics, bio
Chapter 9 - Optical photothermal infrared spectroscopic applications in microplastics—comparison with Fourier transform infrared and Raman   spectroscopy. Krafft, C. et al.Molecular and Laser Spectroscopy, 2022Microplastics
Contribution of Infrared Spectroscopy to the Understanding of Amyloid Protein Aggregation in Complex Systems. Ami, D. et al.Front. Mol. Biosci., 2022Bio and life science review
Novel Submicron Spatial Resolution Infrared Microspectroscopy for Failure Analysis of Semiconductor Components. Zulkifli, S. et al.IPFA 2022 Proceedings, 2022FA/contamination
Overcoming challenging Failure Analysis sample types on a single IR/Raman platform. Anderson, J. et al.ISTFA 2022 Proceedings, 2022FA/contamination
Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification. Boeke, J. et   al.Scientific Report, 2022Microplastics
Super-resolution infrared microspectroscopy reveals heterogeneous distribution of photosensitive lipids in human hair medulla. Sandt, C. et al.Talanta, 2022Life science, hair


科学研究


undefined


生物医学应用




部分用户评价:





BTV专访:非接触式亚微米分辨红外拉曼同步测量新技术如何解决微塑料监测难题


mIRage Demo演示-Microplastics