模块化超分辨共聚焦显微系统-LiveCodim
模块化超分辨共聚焦显微系统-LiveCodim
模块化超分辨共聚焦显微系统-LiveCodim

模块化超分辨共聚焦显微系统-LiveCodim



传统荧光显微镜受到光学衍射极限的影响,高分辨率为200 nm,因此很难观察细胞中的超微结构。LiveCodim是一款模块化超分辨共聚焦显微系统,能够适配绝大多数的倒置荧光显微镜,将现有的倒置显微镜升级成为具备宽场、共聚焦、活细胞超分辨三大模式的成像系统。LiveCodim通过特殊的锥形衍射显微镜—— 一种强大的波束成形器,能够直接提供分辨率高达120 nm的实时活细胞超分辨共聚焦成像,同时无需对样品进行任何额外操作,结合其低光毒性,以及方便快捷的操作系统等优势,非常适合拍摄荧光成像。

产品优势


·  超高性价比:模块化超分辨,节省成本,兼容绝大多数倒置显微镜

·  xy轴超高分辨率:<120 nm

·  z轴深度成像:具备z-stack成像能力,高成像深度50 μm

·  活细胞成像:低光毒性和光漂白性,适合活细胞成像

·  制样简单:样品无需特殊处理,无需特殊染料

·  全自动软件:全自动调节各种参数,简单易上手


主要参数


·  xy轴分辨率:< 120 nm

·  z轴分辨率:< 500 nm

·  z轴成像深度:50 μm

·  成像视野:共聚焦模式下80 μm * 80 μm,超分辨模式下: 50 μm * 50 μm

·  成像模式:宽场、共聚焦、LiveCodim超分辨

·  四色成像通道:405 nm, 488 nm, 561 nm, 640 nm (根据需求可增加)


1.  MDCK细胞中线粒体的动态变化




2.  Hela胞的微管宽场,共聚焦,LiveCodim超分辨成像



3.  细胞分裂中期的COS-7细胞3D多色超分辨成像




4.  植物细胞成像:观测铃兰草的根茎


5.  天然免疫分子TRIM5α作用机制研究

天然免疫分子TRIM5α蛋白是人类基因中决定疾病的易感性和发病速度的重要因素,其抗病毒活性通常通过小泛素相关修饰物(SUMO)调节,但是具体的作用机制仍有待进一步研究。LiveCodim超分辨图像揭示了TRIM5α主要分布在肌小管的核膜上,同时与存在于核孔的细胞质丝上的RanGTPase激活蛋白RanGAP1有明显的共定位现象,和主要定位于核篮上的蛋白Nup153无明显共定位,说明TRIM5α主要定位于这类细胞的胞质面。


[1] Fernandez, Juliette, et al. "Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating." Nature microbiology 4.11 (2019): 1840-1850.

[2] Vargas, Jessica Y., et al. "The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes." The EMBO journal 38.23 (2019): e101230.

[3] Maarifi, Ghizlane, et al. "RanBP2 regulates the anti-retroviral activity of TRIM5α by SUMOylation at a predicted phosphorylated SUMOylation motif." Communications biology 1.1 (2018): 1-11.

[4] Garita-Hernandez, Marcela, et al. "Optogenetic light sensors in human retinal organoids." Frontiers in neuroscience 12 (2018): 789.

[5] Getz, Angela M., et al. "Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons." Scientific reports 7.1 (2017): 1-16.

[6] Portilho, Débora M., Roger Persson, and Nathalie Arhel. "Role of non-motile microtubule-associated proteins in virus trafficking." Biomolecular concepts 7.5-6 (2016): 283-292.

[7] Pagliuso, Alessandro, et al. "A role for septin 2 in Drp1‐mediated mitochondrial fission." EMBO reports 17.6 (2016): 858-873.

[8] Fallet, Clement, and Gabriel Y. Sirat. "Achromatization of conical diffraction: application to the generation of a polychromatic optical vortex." Optics letters 41.4 (2016): 769-772.

[9] Fallet, Clement, et al. "Accurate axial localization by conical diffraction beam shaping generating a dark-helix PSF." Single Molecule Spectroscopy and Superresolution Imaging IX. Vol. 9714. International Society for Optics and Photonics, 2016.

[10] Fallet, Clement, Arvid Lindberg, and Gabriel Y. Sirat. "Generating 3D depletion distribution in an achromatic single-channel monolithic system." Single Molecule Spectroscopy and Superresolution Imaging IX. Vol. 9714. International Society for Optics and Photonics, 2016.

[11] Fallet, Clément, et al. "A new method to achieve tens of nm axial super-localization based on conical diffraction PSF shaping." Single Molecule Spectroscopy and Superresolution Imaging VIII. Vol. 9331. International Society for Optics and Photonics, 2015.

[12] Caron, Julien, et al. "Conical diffraction illumination opens the way for low phototoxicity super-resolution imaging." Cell adhesion & migration 8.5 (2014): 430-439.

[13] Fallet, Clément, et al. "Conical diffraction as a versatile building block to implement new imaging modalities for superresolution in fluorescence microscopy." Nanoimaging and Nanospectroscopy II. Vol. 9169. International Society for Optics and Photonics, 2014.

[14] Rosset, Sybille, Clement Fallet, and Gabriel Y. Sirat. "Focusing by a high numerical aperture lens of distributions generated by conical diffraction." Optics letters 39.23 (2014): 6569-6572.


  


法国巴斯德研究所


undefined


蒙彼利埃大学