热电领域,多篇Science:热电转换测量系统持续助力客户获取关键数据!
发布日期:2024-05-20
导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电器件可以实现热能和电能的直接转换,在航空航天、低品位热回收和固态制冷领域具有重要的研究价值。
随着航空航天、物联网及低品位热回收等领域的发展,热电发电器件的性能越来越受到人们关注,除了用于制备器件的热电材料本身的zT值这一重要因素外,器件的结构(形状、尺寸、连接方式)以及界面材料等都对器件性能有重要影响,因此,对于发电器件性能的准确测量从而改善器件的设计及制造工艺成为科研工作者的迫切需求。
日本Advance Riko公司新推出的小型热电转换测量系统Mini-PEM(图1)是一款既可以测量单腿器件,也可以测量多对器件的商用热电转换效率测量系统。该系统热端温度可高达500℃,可以测量器件在不同温差条件下的发电量、热流量及最大转换效率。
图1、小型热电转换效率测量系统Mini-PEM
赵立东教授课题组Science
碲化铋基热电材料(BiTe)在室温附近具有优异的热电性能,被广泛应用于低温区的制冷及发电,是目前极具前瞻性的热电材料体系,但Te元素的稀缺性(地壳内含量:0.005ppm)使其广泛应用受到限制,因此寻找新的材料体系对于热电材料的广泛应用非常重要。来自北京航空航天大学的赵立东教授课题组对于SnSe体系进行了深入的研究,在2021年的工作中【Science 373 (2021) 556-561】通过掺杂Pb,显著提高了p型SnSe晶体室温附近的电传输性能,并制备了基于SnSe晶体材料的热电器件,测试了其温差发电性能(最大发电量及功率),还实现了大温差的电子制冷。这一研究表明了SnSe基晶体材料作为温差发电和电子制冷材料的巨大潜力,使用p型SnSe晶体制备的器件,其制冷性能达到了使用传统BiTe基材料商用器件的70%(210K温差下),且SnSe基热电材料具有成本低、重量轻且储量更加丰富的优势,具备巨大的应用潜力[1]。
2023年,该课题组通过在SnSe中引入Cu填充Sn空位,有效地提高了载流子迁移率,基于获得的高性能SnSe晶体搭建的热电器件在发电和制冷都表现出优异的性能。发电器件(TEG)在300K温差下能够实现最高12.2%的发电效率,制冷器件(TEC)在室温及高温下也均实现了优异的制冷性能[2]。
近期,该课题组通过物理气相沉积的方法制备了PbSe晶体,以及在PbSe晶体中额外引入微量的Pb,观察到了PbSe晶格中的本征Pb空位被填补,其对应的点缺陷散射被削弱,从而显著增加了载流子迁移率。基于获得的高性能N型PbSe晶体在发电与制冷都表现出优异的性能。如图2A所示,单腿器件在420K温差下能够实现 ~ 11.2%的发电效率;如图2B所示,与该课题组2023年开发的高性能P型SnSe晶体(Science 380(2023)841-846)搭配制备的Se基热电制冷器件在热端温度(Th)为室温下能够实现 ~ 73.3 K的制冷温差,其制冷性能优于Bi2Te3基等材料制成的制冷器件[3]。
图2、热电转换效率对比图(A);制冷器件温差对比图(B)
该工作以《Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3》为题,发表在《Science》上,其中单腿发电器件的发电量及转换效率均使用Mini-PEM测得。与上述工作不同,如果样品为多对p-n结构,ADVANCE RIKO公司则提供热电转换测量系统PEM-2用于发电量及转换效率的测量。热电转换测量系统PEM-2支持多种器件尺寸(最大40mm×40mm),热端最高温度可达800℃,测量在惰性气体(Ar2)中进行。
图3、热电转换效率测量系统PEM-2
何佳清教授课题组Science
近期,来自南方科技大学何佳清教授课题组的科研工作者,首次发现并验证了空穴载流子捕获和释放机制和其对材料电性能的调控作用,以及调控材料本证铅空位形态的赝纳米结构对材料热输运的抑制作用。课题组在碲化铅材料中构造了大量的纳米级空位团簇,这些团簇在材料中产生了大量的应力和应变,使材料的晶格热导率显著降低了,并且更加有利于热电材料的高服役。同时,热电器件结构设计和转换效率的提升,也有助于推动热电发电器件的发展和应用[4]。该工作以《Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe》为题,发表在《Science》上,其中热电发电器件的转换效率使用PEM-2测得。
图4、使用PbTe制备的热电发电器件的热电性能
延伸阅读
日本ADVANCE RIKO公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前沿,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本ADVANCE RIKO公司先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及薄膜厚度方向热电性能评价系统ZEM-d引进中国。
2018年7月,Quantum Design中国与日本ADVANCE RIKO达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本ADVANCE RIKO先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本ADVANCE RIKO热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本ADVANCE RIKO公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。
参考文献
[1] Qin Bingchao et al., Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 30 Jul 2021: Vol. 373, Issue 6554, pp. 556-561
[2] Liu Dongrui et al., Lattice plainification advances highly effective SnSe crystalline thermoelectrics, Science 380, 841–846 (2023)
[3] Qin Yongxin et al., Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3, Science 383, 1204–1209 (2024)
[4] Jia Baohai et al., Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe, Science 384, 81–86 (2024)