当前位置: 首页 > 公司 > 新闻中心 > 技术线上论坛|5月25日《如何实现自动化、高通量单细胞力谱测量?单细胞显微操作技术一步搞定!》

技术线上论坛|5月25日《如何实现自动化、高通量单细胞力谱测量?单细胞显微操作技术一步搞定!》

发布日期:2022-05-18

[报告简介]


单细胞粘附力作为生物机械学分支的重要组成部分,是细胞与外周相互作用的直观体现,能够有效的反映出细胞与基质或细胞之间相互作用能力。细胞与基质之间的作用力十分微小,一般都在nN级别,过去通常使用原子力显微镜才能够进行精确测量。但是原子力显微镜方案往往具有通量低,操作繁琐等问题,使得单细胞力谱的研究非常繁琐。


基于此,Cytosurge推出的全新多功能单细胞显微操作FluidFM技术给细胞力谱测量带来了新的希望。该技术结合了前沿的原子力显微镜探测技术与微流体控制系统,能够直接通过使用中空的原子力探针将细胞通过负压抓取在探针表面,并不需要激活细胞的任何通路信号,为粘附力的测量带来了的优势。一方面,这种方法能够提供远比蛋白结合牢固的多的粘附力,能够将细胞牢固的固定在探针上并且无需包被探针。另一方面,由于没有生物化学处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。该系统具备高度自动化,能够快速,全自动的完成力学的测定,让单细胞力谱研究变得十分容易。


本报告将介绍FluidFM单细胞显微操作技术的原理和发展,并结合多篇发表在期刊Nature、Cell、Bioactive Materials等上的近科研成果,深入阐述这种技术在单细胞力谱测量方面的新进展。


[直播入口]


请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!

扫码进群,即刻获取直播链接,无需注册!


[报告时间]


05月25日 下午15:00-16:00

 

[主讲人介绍]


Tamás Gerecsei 亚太区应用科学家,FluidFM解决方案工程师,Cytosurge AG

Tamás是一位生物物理学家,毕业于Etvs Loránd(ELTE罗兰大学)。 在与FluidFM在学术环境中合作多年后,他加入了Cytosurge公司,成为了一名训练有素的微纳米系统工程师。在Cytosurge AG,Tamás不断推动并拓展FluidFM技术的应用边界,并使FluidFM技术应用于世界各地研究人员的课题中。您可以经常发现他在各种专业的学术会议上传播关于Cytosurge和FluidFM技术的信息。

 

郭亚茹 

北京大学口腔医院,国家口腔医学中心,获中国博士后科学基金,并入选北京大学医学部 2021年博雅博士后项目,在Advanced functional materials、Bioactive Materials、Journal of dental research等杂志上以作者或共同作者的身份发表5篇。

 

2021年,在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章,报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节前沿细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。

 



[原理&应用简介]


FluidFM技术如何测定细胞粘附力?


众所周知,细胞在基质上进行单层培养时,吸附在基质表面时主要会产生两种不同类型的力,一种是细胞与基质之间的粘附力,另一种是细胞与细胞之间的粘附力。因此对于细胞粘附力来说,单个细胞的粘附力就是细胞与基质之间的作用力。而单层细胞的细胞粘附力则是细胞之间相互作用力和细胞基质与细胞之间作用力之和。如下图所示:



因此只要同时测定单个细胞粘附力即可得到细胞与基质之间的相互作用力,而细胞间的相互作用力则可以通过同时测量单层细胞的细胞粘附力和单个细胞的粘附力做差得到,如下公式所示:


Force cell-cell ≌ Force Monolayer – Force Indiv.cell


FluidFM测量力学步骤与一般的原子力显微镜十分类似,但是操作却远比原子力显微镜简单,这得益于FluidFM独有的中空探针。这种探针无需像普通原子力探针一样对探针进行修饰或者将细胞提前粘连在探针上,可以直接在液体中原位抓取细胞,完成粘附力测定,并且在测量后探针仍然可以继续进行测试,并且无需对探针进行更换或再修饰。


FluidFM技术测量单细胞力谱的基本流程。

仅需操作鼠标系统即可自动完成对细胞的抓取和粘附力的测量。


此外FluidFM系统会自动记录探针运动轨迹和力学曲线,如上图中所示当探针开始靠近细胞后,探针表面开始出现压力变化,当系统达到设定力学值后系统会自动停止下降并开始施加负压抓住细胞。随着探针开始上升,细胞给予探针的拉力随之增高,并逐渐达到临界,随后细胞脱离基质,探针受力趋近于零,而这一过程中探针受力的大值即为细胞粘附力。


FluidFM技术测量HeLa细胞核CHO细胞的粘附力。

能够高通量测量单细胞粘附力谱


FluidFM测量粘附力十分智能化,仅需5分钟即可完成单个细胞的粘附力测定,可完成上百个细胞的测量,能够大幅度提升单细胞力谱测量的通量,让单细胞力谱研究变得简单、快速、高通量。

 

应用举例一:FluidFM技术测定衰老内皮细胞的力谱


内皮细胞衰老导致细胞表型的改变与心血管疾病有着密切关系。随着细胞的衰老,细胞的粘附力等机械属性会有很大改变,因此对于细胞粘附力的研究将有助于理解细胞衰老的变化。Nafsika Chala等人利用FluidFM技术对血管内皮细胞与基底之间的粘附力进行研究发现,衰老的细胞与正常细胞存在着nN级别粘附力差异。如下图所示:


FluidFM技术用于衰老与正常细胞的单细胞粘附力测定。

对比衰老小、大和正常细胞的细胞尺寸(a)、细胞粘附力(b)和细胞周长(c)及单细胞粘附力/面积(e)和单细胞粘附力/周长(f)的变化。


研究者认为,衰老内皮细胞的粘附力增加是与细胞的粘着斑增加有关,表明衰老细胞能够加强与基质的相互作用从而防止内皮剥脱,但是受制于血流的影响这种能力受到了很大限制。

 

应用举例二:FluidFM揭示应力依赖性酵母交配中的分子相互作用


性凝集素是芽殖酵母酿酒酵母介导细胞聚集交配的关键蛋白。交配细胞表达的互补凝集素类“a”型和“α”型的结合是促进细胞的凝集和融合的关键。Marion Mathelié-Guinlet等通过测量“a”型和“α”型结合的单个特定键的强度(~100 pN),发现延长细胞间的接触能够地增加了交配细胞间的粘附力,而这种增强可能是由于凝集素的表达。


FluidFM技术用于酵母属间交配过程单细胞力谱测量。

MATa与MATα相互作用的示意图(a)和Fluid测量细胞间相互作用示意图(b)及测量结果(c);用DTT和DEPC药物刺激研究二硫键和His273对粘附的影响(d)、其示机制意图(e)和无粘附、DTT和DEPC粘附发生的概率(f);以及物理应力增强MATa和MATα细胞之间的粘合力(g)、发生频率(h)及破裂长度(i)。


此外,研究组发现凝集素二硫键在粘附过程中起到了关键作用,而这一作用主要来自于α-凝集素的组氨酸残基His273。更为有趣的是,作者发现机械张力增强了相互作用的强度,这可能是由于激诱导凝集素构象从弱结合折叠状态转换成强绑定伸展状态导致。这项研究很好地展现了一种理解控制酵母性别的复杂机制的可能方法。

 

总结


        细胞粘附力测定在细胞生命科学研究中起着关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种能够有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的使用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜的精确测量的特性,真正意义上做到精准、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。