新成果!新型磁力显微镜探针问世,侧向分辨率及力学稳定性再提升
发布日期:2024-02-04
论文题目:Additive Manufacturing of Co3Fe Nano-Probes for Magnetic Force Microscopy
发表期刊:Nanomaterials IF: 5.3
DOI: https://doi.org/10.3390/nano13071217
【引言】
磁力显微镜(MFM)是一种先进的原子力显微方法,它可以对样品表面的局部磁场区域进行表征,通常被用于磁性薄膜材料、磁斯格明子、磁涡和其他纳米材料磁学特性的研究。MFM的测量非常依赖磁学AFM探针。传统情况下,MFM探针是通过在非磁性探针上沉积磁性材料而实现的。然而,这种方法所制备的MFM探针存在着侧向分辨率低和磁性材料涂层界面力学性能不稳定等问题。这些问题,给MFM探针指明了新的发展方向。
【成果简介】
近日,格拉茨技术大学相关团队通过聚焦电子束诱导沉积(FEBID)的方式制备了基于Co3Fe磁性材料,具有纳米级尖端尺寸的MFM探针。所制备MFM探针的化学和结构通过透射电子显微镜(TEM)进行表征。此外,课题组还利用FusionScope多功能显微镜研究了通过FEBID方法制备的MFM探针在测量中的耐磨性以及长期使用稳定性。通过在不同环境下的测试,课题组发现通过FEBID方法所制备的MFM磁性探针依然具有优异的表现。相关工作以《Additive Manufacturing of Co3Fe Nano-Probes for Magnetic Force Microscopy》为题在SCI期刊《Nanomaterials》上发表。
文中使用的FusionScope多功能显微镜采用AFM+SEM原位同步联用技术,可在同一用户界面、同一位置进行AFM和SEM的互补性综合测量。同时,AFM还可轻松实现高级工作模式如:力曲线、导电原子力显微镜(C-AFM)和磁力显微镜(MFM)等,以满足不同测量需求。其原位进行0°-80°AFM与样品台同时旋转功能,可以无盲区实现复杂形貌样品的测量。
FusionScope多功能显微镜设备图
【图文导读】
图1. 通过FEBID方法制备基于Co3Fe磁性材料的MFM探针的示意图。(a)实验中所选用的无针尖压电探针。(b)5keV,5.2pA条件下制备的纳米结构。(c)Co3Fe磁性材料的空心微锥结构。(d)锥形结构的制备方法。(e)通过(d)中的策略所制备的针尖。(f)通过上述方法所制备的半径为10nm的针尖和(g)商业MFM探针针尖的对比图。
图2. 通过FusionScope测量的不同形貌的针尖对于MFM成像效果的影响。
图3. 所制备MFM探针在长时间使用下的稳定性。(a)为样品三维形貌图。(b)为样品的MFM表征结果。
图4. 所制备的MFM探针在环境中长时间保存后的测量性能对比。(a)刚完成制备时探针的MFM表征。(b)制备1年后的探针的表征结果。
【结论】
本文中,格拉茨技术大学相关团队通过聚焦电子束诱导沉积(FEBID)的方式制备了基于Co3Fe磁性材料,所制备MFM探针针尖仅有10 nm,与已有的商业MFM探针相比在微结构尺寸上具有明显优势。通过对所制备MFM探针在各种磁学样品表面进行表征得知,该方法所制备的MFM探针具有分辨率高,耐磨且稳定的优点。该研究为相关微纳磁学相关的研究提供了可能性。值得注意的是,文中MFM的校正工作是在Quantum Design公司研发的FusionScope多功能显微镜上完成的。设备不仅提供了传统扫描电镜(SEM)的形貌表征,还对样品微区进行了三维形貌,磁学等性能的原位表征。不难看出,FusionScope多功能显微镜在微区原位立体表征方面具有得天独厚的优势。